【题目】己知 a>0 且 a≠1,若函数f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)讨论不等式f(x)≥g(x)成立时x的取值范围.
【答案】
(1)
解:h(x)=f(x)﹣g(x)=loga(x﹣1)﹣loga(5﹣x),
根据对数函数的性质得:
,解得:1<x<5,
故函数h(x)的定义域是(1,5)
(2)
解:若不等式f(x)≥g(x)成立,
则loga(x﹣1)≥loga(5﹣x),
0<a<1时, ,解得:1<x≤3,
a>1时, 解得:3≤x<5
【解析】(1)根据对数函数的性质,得到关于x的不等式组,解出即可;(2)通过讨论a的范围,得到函数f(x)的单调性,解关于x的不等式组即可.
【考点精析】掌握对数函数的单调性与特殊点是解答本题的根本,需要知道过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.
科目:高中数学 来源: 题型:
【题目】春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:
做不到“光盘” | 能做到“光盘” | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
附:
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f′(x)是偶函数f(x)(x∈(﹣∞,0)∪(0,+∞)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣1,0)∪(0,1)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z=k﹣2i(k∈R)的共轭复数 ,且z﹣( ﹣i)= ﹣2i.
(1)求k的值;
(2)若过点(0,﹣2)的直线l的斜率为k,求直线l与曲线y= 以及y轴所围成的图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆()与直线: (),四点, , , 中有三个点在椭圆上,剩余一个点在直线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线上,过作直线交椭圆于, 两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn .
(1)求an及Sn;
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com