精英家教网 > 高中数学 > 题目详情

【题目】“节约用水”自古以来就是中华民族的优良传统.某市统计局调查了该市众多家庭的用水量情况,绘制了月用水量的频率分布直方图,如下图所示.将月用水量落入各组的频率视为概率,并假设每天的用水量相互独立.

(l)求在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;

(2)用表示在未来3个月里月用水量不低于12吨的月数,求随杌变量的分布列及数学期望

【答案】(1)0.027;(2)见解析

【解析】分析:(1)利用相互独立事件乘法概率公式和互斥事件加法公式能求出在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨的概率;

(2)由题意得X的可能取值为0,1,2,3,且X~(3,0.3),由此能求出随机变量X的分布列数学期望E(X).

详解(1)设表示事件“月用水量不低于12吨”,表示事件“月用水量低于4吨”,表示事件“在未来连续3个月里,有连续2个月的月用水量都不低于12吨且另1个月的月用水量低于4吨”.

因此,.

因为每天的用水量相互独立,

所以.

(2)可能取的值为0,1,2,3,

相应的概率分别为

,

,

,

.

的分布列为

的数学期望为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)写出它的振幅、周期、初相;

(2)五点法作出它在一个周期内的图象;

(3)说明的图象可由的图象经过怎样的变换而得到。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:

(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:y=哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)

3.5

62.83

3.53

17.5

596.505

12.04

其中

(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程。

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的实系数方程x2+ax+b=0有两个根,一个根在区间(0,1)内,另一根在区间(1,3)内,记点(a,b)对应的区域为S.
(1)设z=2a﹣b,求z的取值范围;
(2)过点(﹣5,1)的一束光线,射到x轴被反射后经过区域S,求反射光线所在直线l经过区域S内的整点(即横纵坐标为整数的点)时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》由如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为,现将该金杖截成长度相等的10段,记第段的重量为,且,若,则( )

A. 6 B. 5 C. 4 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,输出结果S的值为(
A.﹣1008
B.1
C.﹣1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 试估计这组数据的众数、中位数、平均数;

(2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所有芒果以元/千克收购;

B:对质量低于克的芒果以元/个收购,高于或等于克的以元/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数.

(Ⅰ)求的最小值;

(Ⅱ)若不等式恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案