【题目】已知函数 .
(1)当a=3时,求函数 在 上的最大值和最小值;
(2)函数 既有极大值又有极小值,求实数a的取值范围.
【答案】
(1)解:a=3时, ,
函数 在区间 仅有极大值点x=1,故这个极大值点也是最大值点,
故函数在区间 最大值是 ,
又 ,故 .
故函数在 上的最小值为
(2)解:
若 既有极大值又有极小值,则 有两个不同正根 ,即 有两个不同正根,故a应满足
【解析】(1)将a=3代入f(x)中并求出f(x),根据“当f(x)0(0)时,函数f(x)单调递增(减)”确定函数f(x)在[,2]内的单调性,从而可求出f(x)的最大值,比较f(),f(2)的大小,进而可求出f(x)的最小值;(2)求出f(x)的定义域,求导,若f(x)既有极大值又有极小值,则f(x)=0有两个不同正根,列出不等式组即可求解.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)计算f(3),f(4),f( )及f( )的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值f(1)+f(2)+…+f(2017)+f( )+f( )+…+f( ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A(n)表示正整数n的个位数,an=A(n2)﹣A(n),A为数列{an}的前202项和,函数f(x)=ex﹣e+1,若函数g(x)满足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),则数列{bn}的前n项和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网店经营的一种商品进价是每件10元,根据一周的销售数据得出周销量P(件)与单价x(元)之间的关系如图折线所示,该网店与这种商品有关的周开支均为25元.
(I)根据周销量图写出周销量P(件)与单价x(元)之间的函数关系式;
(Ⅱ)写出周利润y(元)与单价x(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
①当切线在两坐标轴上的截距为零时,设切线方程为y=kx,
则 ,解得k=2± ,
从而切线方程为y=(2± )x.
②当切线在两坐标轴上的截距不为零时,设切线方程为x+y-a=0,则 ,解得a=-1或3,
从而切线方程为x+y+1=0或x+y-3=0.
综上,切线方程为(2+ )x-y=0或(2- )x-y=0或x+y+1=0或x+y-3=0
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com