分析 化余弦为正弦,然后令sinx=t换元,利用x的范围求得t的范围,配方后求得函数最小值.
解答 解:f(x)=cos2x+sinx=-sin2x+sinx+1.
令sinx=t,
∵x∈$[{-\frac{π}{4},\frac{π}{4}}]$,∴t=sinx∈[$-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$],
则y=$-{t}^{2}+t+1=-(t-\frac{1}{2})^{2}+\frac{5}{4}$,t∈[$-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$],
当t=-$\frac{\sqrt{2}}{2}$时,${y}_{min}=-(-\frac{\sqrt{2}}{2}-\frac{1}{2})^{2}+\frac{5}{4}=\frac{1-\sqrt{2}}{2}$.
故答案为:$\frac{1-\sqrt{2}}{2}$.
点评 本题考查三角函数最值的求法,考查了利用换元法求二次函数的最值,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com