精英家教网 > 高中数学 > 题目详情

【题目】抛物线C1yx2(p>0)的焦点与双曲线C2y21的右焦点的连线交C1于第一象限的点M.C1在点M处的切线平行于C2的一条渐近线,则p( )

A. B. C. D.

【答案】D

【解析】

试题分析:由已知可求得抛物线的焦点F坐标及双曲线的右焦点F1的坐标,从而就可写出直线FF1的方程,联立直线方程与抛物线的方程可求得点M的横坐标,从而由导数的几何意义可用p在点M处的切线的斜率表示出来,令其等于双曲线渐近线的斜率从而可解出p的值.

因为抛物线 的焦点F0), 双曲线的右焦点F120),渐近线方程为

所以直线FF1的方程为:代入并化简得

解得

由于点M在第一象限,所以点M的横坐标为:

从而在点处的切线的斜率=

解得:

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了名职工进行测试,得到频数分布表如下:

日组装个数

人数

6

12

34

30

10

8

1)现从参与测试的日组装个数少于的职工中任意选取人,求至少有人日组装个数少于的概率;

2)由频数分布表可以认为,此次测试得到的日组装个数服从正态分布近似为这人得分的平均值(同一组数据用该组区间的中点值作为代表).

i)若组装车间有名职工,求日组装个数超过的职工人数;

ii)为鼓励职工提高技能,企业决定对日组装个数超过的职工日工资增加元,若在组装车间所有职工中任意选取人,求这三人增加的日工资总额的期望.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标指标,数据如下表所示:

城市1

城市2

城市3

城市4

城市5

指标

2

4

5

6

8

指标

3

4

4

4

5

1)试求间的相关系数,并说明是否具有较强的线性相关关系(若,则认为具有较强的线性相关关系,否则认为没有较强的线性相关关系).

2)建立关于的回归方程,并预测当指标为7时,指标的估计值.

3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.

参考公式:回归直线中斜率和截距的最小二乘估计分别为

,,相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C1yx2(p>0)的焦点与双曲线C2y21的右焦点的连线交C1于第一象限的点M.C1在点M处的切线平行于C2的一条渐近线,则p( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数上是增函数,求正数的取值范围;

(2)当时,设函数的图象与x轴的交点为,曲线两点处的切线斜率分别为,求证:+ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全社会推行素质教育的大前提下,更强调了学生的全面发展,只有全面重视体育锻炼,才能使学生德智体美全面发展。为了解某高校大学生的体育锻炼情况,做了如下调查统计。该校共有学生10000人,其中男生6000人,女生4000人。为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).

(1)应收集多少位女生的样本数据?

(2)根据这200个样本数据,得到学生每周平均体育运动时间的频率分布直方图,其中样本数据的分组区间为:,估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有50位女生的每周平均体育运动时间超过4个小时,请完成每周平均体育运动时间与性别的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“该校学生的每周平均体育运动时间与性别有关”.

女生

男生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为常数且处取得极值.

1时,求的单调区间;

2上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解使用手机是否对学生的学习有影响,某校随机抽取100名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):

使用手机

不使用手机

总计

学习成绩优秀

10

40

学习成绩一般

30

总计

100

1)补充完整所给表格,并根据表格数据计算是否有99.9%的把握认为学生的学习成绩与使用手机有关;

2)现从上表中不使用手机的学生中按学习成绩是否优秀分层抽样选出6人,再从这6人中随机抽取3人,求其中学习成绩优秀的学生恰有2人的概率.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系.

1)求圆的极坐标方程;

2)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

同步练习册答案