【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:
第一次月考物理成绩 | 第二次月考物理成绩 | 第三次月考物理成绩 | |
学生甲 | 80 | 85 | 90 |
学生乙 | 81 | 83 | 85 |
学生丙 | 90 | 86 | 82 |
则下列结论正确的是( )
A. 甲,乙,丙第三次月考物理成绩的平均数为86
B. 在这三次月考物理成绩中,甲的成绩平均分最高
C. 在这三次月考物理成绩中,乙的成绩最稳定
D. 在这三次月考物理成绩中,丙的成绩方差最大
科目:高中数学 来源: 题型:
【题目】已知各项均不为零的数列{an},定义向量 , ,n∈N* . 下列命题中真命题是( )
A.若?n∈N*总有 ∥ 成立,则数列{an}是等差数列
B.若?n∈N*总有 ∥ 成立,则数列{an}是等比数列
C.若?n∈N*总有 ⊥ 成立,则数列{an}是等差数列
D.若?n∈N*总有 ⊥ 成立,则数列{an}是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合.对于的一个子集,若存在不大于的正整数,使得对于中的任意一对元素,都有,则称具有性质.
(Ⅰ)当时,试判断集合和是否具有性质?并说明理由.
(Ⅱ)若时,
①若集合具有性质,那么集合是否一定具有性质?并说明理由;
②若集合具有性质,求集合中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f()≤2f(1),则a的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2-x)=f(x-1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为( )
A. B. C. D.
【答案】D
【解析】
恰好有3个零点, 等价于的图象有三个不同的交点,
作出的图象,根据数形结合可得结果.
恰好有3个零点,
等价于有三个根,
等价于的图象有三个不同的交点,
作出的图象,如图,
由图可知,
当时,的图象有三个交点,
即当时,恰好有3个零点,
所以,的取值范围是,故选D.
【点睛】
本题主要考查函数的零点与分段函数的性质,属于难题. 函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.
【题型】单选题
【结束】
13
【题目】设集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},则b=______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)从区间内任意选取一个实数,求的概率;
(2)从区间内任意选取一个整数,求的概率
【答案】(1) .(2) .
【解析】试题(1)根据几何概型概率公式,分别求出满足不等式的的区间长度与区间总长度,求比值即可;(2) 区间内共有个数,满足的整数为共有 个,根据古典概型概率公式可得结果.
试题解析: (1)∵,∴,
故由几何概型可知,所求概率为.
(2)∵,∴,
则在区间内满足的整数为5,6,7,8,9,共有5个,
故由古典概型可知,所求概率为.
【方法点睛】本题題主要考查古典概型及“区间型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,区间型,求与区间有关的几何概型问题关鍵是计算问题题的总区间 以及事件的区间;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.
【题型】解答题
【结束】
18
【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).
(1)求函数f(x)的解析式;
(2)若f(2m+5)<f(3m+3),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的顶点A的坐标为(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.
(Ⅰ)求顶点C的坐标;
(Ⅱ)求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)满足:对y=f(x)图象上任意点P(x1 , f(x1)),总存在点P′(x2 , f(x2))也在y=f(x)图象上,使得x1x2+f(x1)f(x2)=0成立,称函数y=f(x)是“特殊对点函数”,给出下列五个函数:
①y=x﹣1;
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y= .
其中是“特殊对点函数”的序号是(写出所有正确的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com