精英家教网 > 高中数学 > 题目详情

【题目】某校高一年级有甲,乙,丙三位学生,他们前三次月考的物理成绩如表:

第一次月考物理成绩

第二次月考物理成绩

第三次月考物理成绩

学生甲

80

85

90

学生乙

81

83

85

学生丙

90

86

82

则下列结论正确的是(  )

A. 甲,乙,丙第三次月考物理成绩的平均数为86

B. 在这三次月考物理成绩中,甲的成绩平均分最高

C. 在这三次月考物理成绩中,乙的成绩最稳定

D. 在这三次月考物理成绩中,丙的成绩方差最大

【答案】C

【解析】

由表格中数据,利用平均数公式以及方差的定义与性质,对选项中的命题逐一判断正误即可.

由表格中数据知,甲、乙、丙的第三次月考物理成绩的平均数为

错误

这三次月考物理成绩中,甲的成绩平均分为85,

丙的成绩平均分最高为错误;

这三次月考物理成绩中,乙的成绩波动性最小,最稳定,∴正确;

这三次月考物理成绩中,甲的成绩波动性最大,方差最大,∴错误.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知各项均不为零的数列{an},定义向量 ,n∈N* . 下列命题中真命题是(
A.若?n∈N*总有 成立,则数列{an}是等差数列
B.若?n∈N*总有 成立,则数列{an}是等比数列
C.若?n∈N*总有 成立,则数列{an}是等差数列
D.若?n∈N*总有 成立,则数列{an}是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.对于的一个子集,若存在不大于的正整数,使得对于中的任意一对元素,都有,则称具有性质.

(Ⅰ)当时,试判断集合是否具有性质?并说明理由.

(Ⅱ)若时,

①若集合具有性质,那么集合是否一定具有性质?并说明理由;

②若集合具有性质,求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f)≤2f(1),则a的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=ax2+bx,(ab为常数,且a≠0)满足条件f(2-x)=fx-1),且方程fx)=x有两个相等的实根.

(1)求fx)的解析式;

(2)设gx)=kx+1,若Fx)=gx)-fx),求Fx)在[1,2]上的最小值;

(3)是否存在实数mnmn),使fx)的定义域和值域分别为[mn][2m,2n],若存在,求出mn的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为(  )

A. B. C. D.

【答案】D

【解析】

恰好有3个零点, 等价于的图象有三个不同的交点

作出的图象,根据数形结合可得结果.

恰好有3个零点,

等价于有三个根,

等价于的图象有三个不同的交点

作出的图象,如图,

由图可知,

时,的图象有三个交点,

即当时,恰好有3个零点,

所以的取值范围是故选D.

【点睛】

本题主要考查函数的零点与分段函数的性质,属于难题. 函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数轴的交点方程的根函数的交点.

型】单选题
束】
13

【题目】设集合A={0,log3(a+1)},B={a,a+b}若A∩B={1},则b=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)从区间内任意选取一个实数,求的概率;

(2)从区间内任意选取一个整数,求的概率

【答案】(1) .(2) .

【解析】试题(1)根据几何概型概率公式,分别求出满足不等式的的区间长度与区间总长度,求比值即可;(2) 区间内共有个数,满足的整数为共有 个,根据古典概型概率公式可得结果.

试题解析: (1)

故由几何概型可知,所求概率为.

(2)

则在区间内满足的整数为56789共有5

故由古典概型可知,所求概率为.

【方法点睛】本题題主要考查古典概型及“区间型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,区间型求与区间有关的几何概型问题关鍵是计算问题题的总区间 以及事件的区间几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.

型】解答
束】
18

【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).

(1)求函数f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A的坐标为(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在的直线方程为x-2y-5=0.

(Ⅰ)求顶点C的坐标;

(Ⅱ)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)满足:对y=f(x)图象上任意点P(x1 , f(x1)),总存在点P′(x2 , f(x2))也在y=f(x)图象上,使得x1x2+f(x1)f(x2)=0成立,称函数y=f(x)是“特殊对点函数”,给出下列五个函数:
①y=x1
②y=log2x;
③y=sinx+1;
④y=ex﹣2;
⑤y=
其中是“特殊对点函数”的序号是(写出所有正确的序号)

查看答案和解析>>

同步练习册答案