精英家教网 > 高中数学 > 题目详情
已知A、B、C三点在球心为O,半径为3的球面上,且几何体O-ABC为正三棱锥,若A、B两点的球面距离为π,则正三棱锥的侧面与底面所成角的余弦值为
1
3
1
3
分析:欲求正三棱锥的侧面与底面所成角的余弦值,先求出A、B两点的球心角∠AOB,再利用题设条件求出几何体O-ABC为正四面体,利用余弦定理即得.
解答:解:作出图形,
∵A、B两点的球面距离为π,
∴球心角∠AOB=
π
3

∵OA=OB=3,∴AB=3.
∵几何体O-ABC为正三棱锥,∴几何体O-ABC为正四面体,
设正四面体O-ABC的棱长为2,取AC中点D,连接OD,BD,
∵OA=OC=AC=AB=BC=2,
∴OD⊥AC,BD⊥AC,OD=BD=
3

∴∠ODB是正三棱锥的侧面与底面所成角,
∴cos∠ODB=
(
3
)
2
+(
3
)2-22
3
×
3
=
1
3

故答案为:
1
3
点评:本题主要考查了点、线、面间的距离计算,考查空间想象能力、运算能力和推理论证能力,属于中档题.解题时要注意余弦定理的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C三点在球心为O,半径为1的球面上,且几何体O-ABC为正四面体,那么点O到平面ABC的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点在球心为O,半径为3的球面上,且几何体O-ABC为正四面体,那么A,B两点的球面距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点在球心为O,半径为3的球面上,且几何体O-ABC为正四面体,那么A,B两点的球面距离为
 
;点O到平面ABC的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点在同一条直线l上,O为直线l外一点,若p
OA
+q
OB
+r
OC
=
0
,p,q,r∈R,则p+q+r=(  )
A、-1B、0C、1D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点在同一直线上,A(3,-6),B(-5,2),若C点的横坐标为6,则它的纵坐标为
 

查看答案和解析>>

同步练习册答案