精英家教网 > 高中数学 > 题目详情

【题目】设集合A={x|2a﹣1≤x≤a+3},集合B={x|x<﹣1或x>5}.
(1)当a=﹣2时,求A∩B;
(2)若AB,求实数a的取值范围.

【答案】
(1)解当a=﹣2时,A={x|﹣5≤x≤1},集合B={x|x<﹣1或x>5},

∴A∩B={x|﹣5≤x<﹣1}


(2)解∵AB,分两种情况;

当A=,2a﹣1>a+3,解得a>4,

当A≠,则

解得a≤﹣4或a≥3,

综上a的取值范围是{a|a≤﹣4或a≥3}


【解析】(1)根据集合的交集的定义即可求出;(2)由AB的关系,然后分B为空集和非空集合列式求解实数a的取值范围.
【考点精析】根据题目的已知条件,利用集合的交集运算的相关知识可以得到问题的答案,需要掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.

(1)根据已知条件完成下面的列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?

网购迷

非网购迷

合计

年龄不超过40岁

年龄超过40岁

合计

(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数的分布列与期望.

附:

0.15

0.10

0.05

0.01

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,1),则函数g(x)=f( )+f(x﹣1)的定义域为(
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形且, , 分别为的中点, , ,

(Ⅰ)证明:直线∥平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)为奇函数,且在(﹣∞,0)内是减函数,f(2)=0,则 <0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x∈R),若f(x)满足f(﹣x)=﹣f(x).
(1)求实数a的值;
(2)证明f(x)是R上的单调减函数(定义法).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足:a7=a6+2a5 , 若存在两项am , an , 使得aman=16a12 , 则 + 的最小值为(
A.
B.
C.
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+2=0},且A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

同步练习册答案