精英家教网 > 高中数学 > 题目详情

【题目】已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3。

(I)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;

(II)求证:平面A1ACC1⊥平面D1DB;

(III)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,试求E1F长度的最小值。

【答案】(1)DE=3,见解析(2)见解析(3)

【解析】

试题(1)在DC上取点E,使DE=3,根据平几知识可得DEE1D1为平行四边形,即得EE1DD1.再根据线面平行判定定理得结论,(2)先根据长方体性质得AA1DB.再结合正方形性质得ACDB,根据线面垂直判定定理得DB⊥平面A1ACC1.,最后根据面面垂直判定定理得结论,(3)由圆的定义可得点F的轨迹,注意轨迹范围,根据勾股定理得E1F取最小值时EF取最小值.再根据圆的性质求最值.

试题解析:证明:(I)在DC上取点E,使DE=3,此时直线EE1∥平面D1DB.

证明如下:在长方体ABCD-A1B1C1D1中,DED1E1,且DE=D1E1

所以四边形DEE1D1为平行四边形.

所以EE1DD1.

DD1平面D1DB,EE1平面D1DB,

所以直线EE1∥平面D1DB.

Ⅱ)在正方形ABCD中,ACDB,

AA1⊥底面ABCD,DB底面ABCD,

所以AA1DB.

AA1AC=A,

所以DB⊥平面A1ACC1.

DB平面D1DB,

所以平面A1ACC1⊥平面D1DB.

(III)因为动点F在正方形内,且AF=2,

所以点F的轨迹为以A为圆心,2为半径,在正方形ABCD内的个圆周。

由题意知,直线EE1⊥平面ABCD,所以EE1EF,故E1F取最小值,即EF取最小值.

所以当A,F,E三点共线时,EF长度最小,即E1F长度最小,

此时AE=

E1F=.

所以E1F的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记min{x,y}= 设f(x)=min{x2 , x3},则(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校某文具商店经营某种文具,商店每销售一件该文具可获利3元,若供大于求则削价处理,每处理一件文具亏损1元;若供不应求,则可以从外部调剂供应,此时每件文具仅获利2元.为了了解市场需求的情况,经销商统计了去年一年(52周)的销售情况.

销售量(件)

10

11

12

13

14

15

16

周数

2

4

8

13

13

8

4

以去年每周的销售量的频率为今年每周市场需求量的概率.
(1)要使进货量不超过市场需求量的概率大于0.5,问进货量的最大值是多少?
(2)如果今年的周进货量为14,写出周利润Y的分布列;
(3)如果以周利润的期望值为考虑问题的依据,今年的周进货量定为多少合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲C的极坐标方程ρ=2sinθ,设直线L的参数方程 ,(t为参数)设直线L与x轴的交点M,N是曲线C上一动点,求|MN|的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形的两条对角线相交于点 边所在直线的方程为,点边所在直线上.

)求边所在直线的方程;

)求矩形外接圆的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 公比q>0,S2=2a2﹣2,S3=a4﹣2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,Tn为{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,运行相应的程序,则输出的S的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为R的偶函数f(x)满足x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(x+1)恰有三个零点,则a的取值范围是(
A.(0,
B.(0,
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,过的直线交于两点,点的坐标为.

(1)当轴垂直时,求直线的方程;

(2)设为坐标原点,证明:.

查看答案和解析>>

同步练习册答案