精英家教网 > 高中数学 > 题目详情
12.为了得到函数y=$\sqrt{2}$cos3x的图象,可以将函数y=sin3x+cos3x的图象向左平移$\frac{π}{12}$个单位.

分析 利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.

解答 解:∵函数y=sin3x+cos3x=$\sqrt{2}$cos(3x-$\frac{π}{4}$)=$\sqrt{2}$cos[3(x-$\frac{π}{12}$)],
∴只需将函数y=sin3x+cos3x的图象向左平移$\frac{π}{12}$个单位,得到y=$\sqrt{2}$cos[3(x-$\frac{π}{12}$+$\frac{π}{12}$)]=$\sqrt{2}$cos3x的图象.
故答案为:$\frac{π}{12}$.

点评 本题考查两角和与差的三角函数以及三角函数的平移变换的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知曲线y=lnx的切线过原点,则此切线的斜率为(  )
A.eB.-eC.$\frac{1}{e}$D.-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点(1,$\frac{3}{2}$)在椭圆C上,且椭圆C的离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F的直线与椭圆C交于P、Q两点,A为椭圆C的右顶点,直线PA,QA分别交直线l:x=4于M,N两点,求证:FM⊥FN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A(-1,-3),B(3,5),点M在直线AB上,且|$\overrightarrow{AM}$|=$\frac{3}{2}$|$\overrightarrow{MB}$|,求$\overrightarrow{OM}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|x2-4x+3≥0},B={x|2x-3≤0},则A∪B=(  )
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x3+x,若$2+f({log_{\frac{1}{a}}}2)>0$,则实数a的取值范围是(0,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,设角A,B,C所对边分别为a,b,c,已知向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大小;
(2)若a=3,求△ABC的周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=8x的焦点为F,A、B为抛物线上两点,若$\overrightarrow{AF}=3\overrightarrow{FB}$,则△AOB的面积为(  )
A.$\frac{4\sqrt{3}}{3}$B.$\frac{16\sqrt{3}}{3}$C.$\frac{32\sqrt{3}}{3}$D.$\frac{64\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若关于x的方程mx2+(m-1)x+m=0没有实数根,则实数m的取值范围是$(-∞,-1)∪(\frac{1}{3},+∞)$.

查看答案和解析>>

同步练习册答案