精英家教网 > 高中数学 > 题目详情
过椭圆内一点M(2,0) 引椭圆的动弦AB, 则弦AB的中点N的轨迹方程是                         .  
 
N(x,y), 动弦AB方程为, 与联立, 消去y得: , 消参即得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(ab>0)的左焦点为F1(-2,0),左准线l1x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于AB两点.
(1)求直线l和椭圆的方程;
(2)求证:点F1(-2,0)在以线段AB为直径的圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆C:上任一点P,作椭圆C的右准线的垂线PH(H为垂足),延长PH到点Q,使|HQ|=λ|PH|(λ≥1)。当点P在椭圆C上运动时,点Q的轨迹的离心率的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点在圆上移动,点在椭圆上移动,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC的两个顶点AB分别是椭圆 的左、右焦点, 三个内角ABC满足, 则顶点C的轨迹方程是(        ).  
A.B.(x<0)C.(x.<-2 )D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是椭圆的两个焦点,是椭圆上一点,若,证明:的面积只与椭圆的短轴长有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆的离心率为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,椭圆中心在原点,F是左焦点,直线与BF交于D,且,则椭圆的离心率为(      )                                                          
 
A      B    C    D 

查看答案和解析>>

同步练习册答案