精英家教网 > 高中数学 > 题目详情
如图,椭圆C:x2+3y2=3b2(b>0).
(1)求椭圆C的离心率;
(2)若b=1,A,B是椭圆C上两点,且|AB|=
3
,求△AOB面积的最大值.
(1)由x2+3y2=3b2
x2
3b2
+
y2
b2
=1

所以e=
c
a
=
3b2-b2
3b2
=
6
3

(2)设A(x1,y1),B(x2,y2),△ABO的面积为S.
如果AB⊥x轴,由对称性不妨记A的坐标为(
3
2
3
2
),此时S=
1
2
3
2
3
=
3
4

如果AB不垂直于x轴,设直线AB的方程为y=kx+m,代入椭圆方程,可得x2+3(kx+m) 2=3,
即(1+3k2)x2+6kmx+3m2-3=0,又△=36k2m2-4(1+3k2) (3m2-3)>0,
所以x1+x2=-
6km
1+3k2
,x1x2=
3m2-3
1+3k2

所以(x1-x22=(x1+x22-4x1x2=
12(1+3k2-m2)
(1+3k2)2
,①
由|AB|=
1+k2
•|x1-x2|
及|AB|=
3
得(x1-x22=
3
1+k2
,②
结合①,②得m2=(1+3k2)-
(1+3k2)2
4(1+k2)

又原点O到直线AB的距离为
|m|
1+k2

所以S=
1
2
|m|
1+k2
3

因此S2=
3
4
m2
1+k2
=
3
16
1+3k2
1+k2
-2)2+
3
4
3
4

故S≤
3
2
,当且仅当
1+3k2
1+k2
=2,即k=±1时上式取等号.
3
2
3
4
,故Smax=
3
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题15分)已知曲线C是到点和到直线

距离相等的点的轨迹,l是过点Q(-1,0)的直线,
MC上(不在l上)的动点;A、Bl上,
轴(如图)。
(Ⅰ)求曲线C的方程;
(Ⅱ)求出直线l的方程,使得为常数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l被圆x2+y2=4所截得的弦长为2
3
,l与曲线
x2
3
+y2=1
的公共点个数为(  )
A.1个B.2个C.1个或2个D.1个或0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C1:y=x2,F为抛物线的焦点,椭圆C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1与C2在第一象限的交点,且|MF|=
3
4
,求实数a的值;
(2)设直线l:y=kx+1与抛物线C1交于A,B两个不同的点,l与椭圆C2交于P,Q两个不同点,AB中点为R,PQ中点为S,若O在以RS为直径的圆上,且k2
1
2
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y=-
x2
2
与过点M(0,-1)的直线l相交于A、B两点,O为原点.若OA和OB的斜率之和为1.
(1)求直线l的方程;
(2)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(6,0)和点C(-6,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2
(1)如果k1•k2=-
4
9
,求点A的轨迹方程,并写出此轨迹曲线的焦点坐标;
(2)如果k1•k2=
4
9
,求点A的轨迹方程,并写出此轨迹曲线的离心率;
(3)如果k1•k2=k(k≠0,k≠-1),根据(1)和(2),你能得到什么结论?(不需要证明所得结论)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,且|F1F2|=4,一条渐近线的倾斜角为60°.
(I)求双曲线C的方程和离心率;
(Ⅱ)若点P在双曲线C的右支上,且△PF1F2的周长为16,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)的焦点F作直线与抛物线交于A、B两点,以AB为直径的圆与抛物线的准线的位置关系是(  )
A.相交B.相切
C.相离D.与p的取值相关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,直线x+y+1=0与椭圆交于P、Q两点,且OP⊥OQ,求该椭圆方程.

查看答案和解析>>

同步练习册答案