精英家教网 > 高中数学 > 题目详情
精英家教网已知函数f(x)=|
1x
-1|
,其中x∈(o,+∞).
(I)在给定的坐标系中,画出函数f(x)的图象;
(II)设0<a<b,且f(a)=f(b),证明:ab>1.
分析:(I)去绝对值号将函数变为分段函数,即f(x)=
1
x
-1    x∈(0,1]
1-
1
x
    x∈(1,+∞).
分段作出图象即可;
(II)当0<a<b,且f(a)=f(b)时,由f(a)=f(b)?|1-
1
a
|=|1-
1
b
|?(1-
1
a
2=(1-
1
b
2?2ab=a+b≥2
ab
得到关于ab的不等式,解出不等式的解集,由解集确定ab>1.
解答:精英家教网证明:(I)不等式可以变为f(x)=
1
x
-1    x∈(0,1]
1-
1
x
    x∈(1,+∞).

对函数进行分析知f(x)在(0,1]上是减函数,在(1,+∞)上是增函数.
其图象为:
(II):由题意f(a)=f(b)?|1-
1
a
|=|1-
1
b
|?(1-
1
a
2=(1-
1
b
2?2ab=a+b≥2
ab

故ab-
ab
≥0,即
ab
ab
-1)≥0,
ab
-1≥0,故ab>1.
点评:本题考点是函数的图象、绝对值不等式的解法,考查利用绝对值不等式这一工具证明不等式,二者的结合点相当隐蔽,本题需要对题设条件进行转化证明,请注意体会这里的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案