精英家教网 > 高中数学 > 题目详情
已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∩B=(  )
A、(2,3)
B、[-1,5]
C、(-1,5)
D、(-1,5]
考点:交集及其运算
专题:集合
分析:直接由交集运算得答案.
解答: 解:∵集合A={x|-1≤x<3},B={x|2<x≤5},
∴A∩B={x|-1≤x<3}∩{x|2<x≤5}=(2,3).
故选:A.
点评:本题考查了交集及其运算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知c=
7
2
,△ABC的面积为
3
3
2
,又tanA+tanB=
3
(tanAtanB-1).
(Ⅰ)求角C的大小;
(Ⅱ)求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(-3)0-0
1
3
+(
1
2
)-2+16-  
1
4
-8
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|3x≥27,x∈Z},B={x|(x-m-4)(x-m+1)<0}.
(1)求集合∁NA;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2,g(x)=4x-1的定义域都是集合A,函数f(x)和g(x)的值域分别为S和T.
(Ⅰ)若A=[1,2],求S∩T;
(Ⅱ)若A=[1,m](m>1),且S=T,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,CC1=
2
,E是棱BB1的中点.
(Ⅰ)求证:CE⊥AC1
(Ⅱ)求二面角A-C1E-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x|x-1|-blnx+m,(b,m∈R)
(Ⅰ)当b=3时,判断函数f(x)在[l,+∞)上的单调性;
(Ⅱ)记h(x)=f(x)+blnx,当m>1时,求函数y=h(x)在[0,m]上的最大值;
(Ⅲ)当b=1时,若函数f(x)有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x3+2x2+5x+t)e-x,t∈R,x∈R.
(Ⅰ)当t=5时,求函数y=f(x)的单调区间;
(Ⅱ)若存在实数t∈[0,1],使对任意的x∈[-4,m],不等式 f(x)≤x恒成立,
求整数m的最大值.

查看答案和解析>>

同步练习册答案