精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中, 为坐标原点, 是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点,使得为定值,则该定值为________

【答案】

【解析】设P(x,y),M(x1,y1),N(x2,y2),

则由,得(x,y)=2x1y1-x2y2),

即x=2x1-x2,y=2y1-y2

点M,N在双曲线上,所以

2x2-y2=(8x12+2x22-8x1x2)-(4y12+y22-4y1y2)=20-4(2x1x2-y1y2),

设k0M,kON分别为直线OM,ON的斜率,根据题意可知k0MkON=2,

∴y1y2-2 x1x2=0,

∴2x2-y2=20,

所以P在双曲线2x2-y2=20上;

设该双曲线的左,右焦点为F1,F2

由双曲线的定义可推断出为定值,该定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、2倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为为参数).

(1)求曲线上的点到直线的距离的最大值与最小值;

(2)过点与直线平行的直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)设点,直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)上的单调区间

(2) 均恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是圆柱体的母线, 是底面圆的直径, 分别是的中点, .

(1)求证: 平面

(2)求点到平面的距离;

(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是边长为的正方形,平面与平面所成角为

Ⅰ)求证:平面

Ⅱ)求二面角的余弦值.

Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为,点在抛物线上,已知以点为圆心, 为半径的圆两点.

(Ⅰ)若 的面积为4,求抛物线的方程;

(Ⅱ)若三点在同一条直线上,直线平行,且与抛物线只有一个公共点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线斜率为2.

(Ⅰ)求的单调区间和极值;

(Ⅱ)若上无解,求的取值范围.

查看答案和解析>>

同步练习册答案