【题目】在平面直角坐标系中, 为坐标原点, 、是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点、,使得为定值,则该定值为________
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、2倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程;
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参考方程为(为参数).
(1)求曲线上的点到直线的距离的最大值与最小值;
(2)过点与直线平行的直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)设点,直线与圆相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为的正方形,平面,,,与平面所成角为.
(Ⅰ)求证:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,准线为,点在抛物线上,已知以点为圆心, 为半径的圆交于两点.
(Ⅰ)若, 的面积为4,求抛物线的方程;
(Ⅱ)若三点在同一条直线上,直线与平行,且与抛物线只有一个公共点,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com