精英家教网 > 高中数学 > 题目详情

【题目】已知集合A{x|x22x3≤0}B{x|x22mx+m24≤0xRmR}

1)若ABA,求实数m的取值;

2)若AB{x|0≤x≤3},求实数m的值;

(3)若A,求实数m的取值范围.

【答案】1m1

2m2

3m5m<﹣3

【解析】

1)先求出集合,再依据ABA可推出,即可求出;

2)由AB{x|0≤x≤3},根据交集的定义即可求出;

3)由补集定义可求出,再根据集合的子集关系即可求出.

1A{x|1≤x≤3}B{x|[x﹣(m2][x﹣(m+2]≤0xRmR}{x|m2≤xm+2}

ABA,∴BA

,解得m1

2)∵AB{x|0≤x≤3}

解得m2

3{x|xm2xm+2}

A,∴m23m+2<﹣1

m5m<﹣3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数满足,则称函数为“函数”.

试判断是否为“函数”,并说明理由;

函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;

条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)当时,求的单调区间;

(2)若对任意时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且在上单调递减,则的解集为  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,且底面中点,点上一点.

(1)求证: 平面

(2)求二面角 的余弦值;

(3)设,若,写出的值(不需写过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(1)判断上的单调性,并用定义证明;

(2)解不等式

(3)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对下列命题:

①直线与函数的图象相交,则相邻两交点的距离为

②点 是函数的图象的一个对称中心;

③函数上单调递减,则的取值范围为

④函数R恒成立,则.

其中所有正确命题的序号为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,E,F分别为线段CD和上的动点,且满足,则四边形所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和(  )

A. 有最小值B. 有最大值C. 为定值3D. 为定值2

查看答案和解析>>

同步练习册答案