É躯Êýy=f£¨x£©=x2-bx+1£¬ÇÒy=f£¨x+1£©µÄͼÏó¹ØÓÚÖ±Ïßx=-1¶Ô³Æ£®ÓÖy=f£¨x£©µÄͼÏóÓëÒ»´Îº¯Êýg£¨x£©=kx+2£¨k£¼0£©µÄͼÏó½»ÓÚÁ½µãA¡¢B£¬ÇÒ|AB=
10
|£®
£¨1£©Çób¼°kµÄÖµ£»
£¨2£©¼Çº¯ÊýF£¨x£©=f£¨x£©g£¨x£©£¬ÇóF£¨x£©ÔÚÇø¼ä[0£¬1]ÉϵÄ×îСֵ£»
£¨3£©Èôsin¦Á£¬sin¦Â£¬sin¦Ã¡Ê[0£¬1]£¬ÇÒsin¦Á+sin¦Â+sin¦Ã=1£¬ÊÔ¸ù¾ÝÉÏÊö£¨1£©¡¢£¨2£©µÄ½áÂÛÖ¤Ã÷£º
sin¦Á
1+sin2¦Á
+
sin¦Â
1+sin2¦Â
+
sin¦Ã
1+sin2¦Ã
¡Ü
9
10
£®
·ÖÎö£º£¨1£©ÒÑÖªº¯Êýy=f£¨x£©=x2-bx+1£¬¸ù¾Ýżº¯ÊýµÄÐÔÖÊ£¬f£¨-x£©=f£¨x£©£¬Çó³öbÖµ£¬Éè·½³Ìx2+1=kx+2µÄÁ½¸ùΪx1£¬x2£¬ÓÉ|AB|=
10
£¬¿ÉÒÔÇó³ökÖµ£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬½«f£¨x£©ºÍg£¨x£©´úÈëF£¨x£©£¬¶ÔF£¨x£©½øÐÐÇóµ¼£¬ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ×îÖµÎÊÌ⣬´Ó¶øÇó½â£»
£¨3£©ÓÉ£¨2£©Öª£¬µ±x¡Ê[0£¬1]ʱ£¬Óв»µÈʽ£¨1+x2£©£¨2-x£©¡Ý
50
27
ºã³ÉÁ¢£¬¿ÉÒÔת»¯Îª
x
1+x2
¡Ü
27
50
£¨2x-x2£©£¬ÀûÓô˲»µÈʽ½øÐзÅËõ£¬´Ó¶ø½øÐÐÖ¤Ã÷£»
½â´ð£º½â£º£¨1£©ÓÉÒÑÖª£¬y=f£¨x£©=x2-bx+1Ϊżº¯Êý£¬ËùÒÔb=0£»      ¡­£¨2·Ö£©
Éè·½³Ìx2+1=kx+2µÄÁ½¸ùΪx1£¬x2£¬ÓÉ|AB|=
10
µÃ£º
1+k2
|x1-x2|=
1+k2
(x1+x2)2-4x1x2
=
(1+k2)(k2+4)
=
10

½âµÃk=-1£»                                                         ¡­£¨4·Ö£©
£¨2£©ÓÉ£¨1£©Öªf£¨x£©=x2+1£¬g£¨x£©=-x+2£¬¹ÊF£¨x£©=f£¨x£©g£¨x£©=-x3+2x2-x+2£¬
ÓÉF¡ä£¨x£©=-3x2+4x-1=0£¬½âµÃx1=1£¬x2=
1
3
£¬¡­£¨6·Ö£©
ÁбíÈçÏ£º

x 0 £¨0£¬
1
3
£©
1
3
£¨
1
3
£¬1£©
1
F¡ä£¨x£© - +
F£¨x£© 2 ¼õº¯Êý
50
27
Ôöº¯Êý 2
ËùÒÔ£¬º¯ÊýF£¨x£©ÔÚÇø¼ä[0£¬1]ÉϵÄ×îСֵΪf£¨
1
3
£©=
50
27
£»                  ¡­£¨10·Ö£©
£¨3£©ÓÉ£¨2£©Öª£¬µ±x¡Ê[0£¬1]ʱ£¬Óв»µÈʽ£¨1+x2£©£¨2-x£©¡Ý
50
27
ºã³ÉÁ¢£¬
ËùÒÔ
1
1+x2
¡Ü
27
50
£¨2-x£©£¬ÓÐ
x
1+x2
¡Ü
27
50
£¨2x-x2£©£¬¡­£¨12·Ö£©
µ±sin¦Á£¬sin¦Â£¬sin¦Ã¡Ê[0£¬1]£¬ÇÒsin¦Á+sin¦Â+sin¦Ã=1ʱ£¬
sin¦Á
1+sin2¦Á
+
sin¦Â
1+sin2¦Â
+
sin¦Ã
1+sin2¦Ã
¡Ü
27
50
[2£¨sin¦Á+sin¦Â+sin¦Ã£©-£¨sin2¦Á+sin2¦Â+sin2¦Ã£©
=
27
50
[2-(sin2¦Á+sin2¦Â+sin2¦Ã)]
                                    ¡­£¨14·Ö£©
ÓÖ1=£¨sin¦Á+sin¦Â+sin¦Ã£©2¡Ü3£¨sin2¦Á+sin2¦Â+sin2¦Ã£©£¬
¡àsin2¦Á+sin2¦Â+sin2¦Ã¡Ý
1
3
£¬
¡à
sin¦Á
1+sin2¦Á
+
sin¦Â
1+sin2¦Â
+
sin¦Ã
1+sin2¦Ã
¡Ü
27
50
£¨2-
1
3
£©=
9
10
£¬
µ±ÇÒ½öµ±sin¦Á=sin¦Â=sin¦Ã=
1
3
ʱ£¬µÈºÅ³ÉÁ¢£®¡­£¨16·Ö£©
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼°Æä×îÖµÎÊÌ⣬½âÌâµÄ¹ý³ÌÖÐÓõ½ÁËת»¯µÄ˼Ï룬µÚÈýÎÊÄѶȱȽϴó£¬ÐèÒªÓõ½Ç°Á½ÎʵĽáÂÛ£¬ÊÇÒ»µÀÄÑÌ⣬ͬѧÃÇÒªÈÏÕæ×öºÃ±Ê¼Ç£»
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢É躯Êýy=f£¨x£©´æÔÚ·´º¯Êýy=f-1£¨x£©£¬ÇÒº¯Êýy=x-f£¨x£©µÄͼÏó¹ýµã£¨1£¬2£©£¬Ôòº¯Êýy=f-1£¨x£©-xµÄͼÏóÒ»¶¨¹ýµã
£¨-1£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©ÊǶ¨ÒåÔÚR+Éϵĺ¯Êý£¬²¢ÇÒÂú×ãÏÂÃæÈý¸öÌõ¼þ£º¢Ù¶ÔÈÎÒâÕýÊýx£¬y ¶¼ÓÐf£¨xy£©=f£¨x£©+f£¨y£©£»¢Úµ±x£¾1ʱ£¬f£¨x£©£¼0£»¢Ûf£¨3£©=-1£®
£¨1£©Çóf£¨1£©£¬f£¨
19
£©µÄÖµ£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÔÚR+ÉÏÊǼõº¯Êý£»
£¨3£©Èç¹û²»µÈʽ·Öf£¨x£©+f£¨2-x£©£¼2³ÉÁ¢£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©µÄµ¼º¯ÊýÊÇy=f¡ä£¨x£©£¬³Æ¦Åyx=f¡ä(x)•
x
y
Ϊº¯Êýf£¨x£©µÄµ¯ÐÔº¯Êý£®
º¯Êýf£¨x£©=2e3xµ¯ÐÔº¯ÊýΪ
3x
3x
£»Èôº¯Êýf1£¨x£©Óëf2£¨x£©µÄµ¯ÐÔº¯Êý·Ö±ðΪ¦Åf 1xÓë¦Åf 2x£¬Ôòy=f1£¨x£©+f2£¨x£©£¨f1£¨x£©+f2£¨x£©¡Ù0£©µÄµ¯ÐÔº¯ÊýΪ
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
 f1(x)ef1x+f2(x)ef2x  
f1(x)+f2(x)
£®
£¨ÓæÅf 1x£¬¦Åf 2x£¬f1£¨x£©Óëf2£¨x£©±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©ÄÚÓж¨Ò壬¶ÔÓÚ¸ø¶¨µÄÕýÊýK£¬¶¨Ò庯ÊýfK£¨x£©=
f(x)£¬f(x)¡Ük
k£¬f(x)£¾k
£¬È¡º¯Êýf£¨x£©=2-x-e-x£¬Èô¶ÔÈÎÒâµÄx¡Ê£¨-¡Þ£¬+¡Þ£©£¬ºãÓÐfK£¨x£©=f£¨x£©£¬ÔòKµÄ×îСֵΪ
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýy=f£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©ÄÚÓж¨Ò壮¶ÔÓÚ¸ø¶¨µÄÕýÊýK£¬¶¨Ò庯Êýfk£¨x£©=
f(x)£¬f(x)¡ÝK
K£¬f(x)£¼K
£¬È¡º¯Êýf£¨x£©=2+x+e-x£®Èô¶ÔÈÎÒâµÄx¡Ê£¨+¡Þ£¬-¡Þ£©£¬ºãÓÐfk£¨x£©=f£¨x£©£¬Ôò£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸