精英家教网 > 高中数学 > 题目详情

【题目】如图,是通过某城市开发区中心O的两条南北和东西走向的街道,链接MN两地之间的铁路是圆心在上的一段圆弧,若点MO正北方向,且,点N距离分别为4km5km

建立适当的坐标系,求铁路线所在圆弧的方程;

若该城市的某中学拟在O点正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4km,并且铁路线上任意一点到校址的距离不能少于,求该校址距离点O的最近距离.注:校址视为一个点

【答案】(1) (2)O最近6km的地方.

【解析】

建立坐标系,利用圆心在弦的垂直平分线上求圆心坐标,再求半径,进而写出圆的方程.

据条件列出不等式,运用函数单调性解决恒成立问题.

解:分别以x轴,y轴建立如图坐标系.

据题意得

MN中点为

线段MN的垂直平分线方程为:

故圆心A的坐标为

半径

MN的方程为:

设校址选在

恒成立.

,对恒成立

整理得:,对恒成立

上为减函数.

解得

即校址选在距O最近6km的地方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在定义域上的导函数为,若函数没有零点,且,当上与上的单调性相同时,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆与圆关于直线对称.

1)求圆的方程;

2)过直线上的点分别作斜率为4的两条直线,使得被圆截得的弦长与被圆截得的弦长相等.

i)求点的坐标;

ii)过点任作两条互相垂直的直线分别与两圆相交,判断所得弦长是否恒相等,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某赛季,甲、乙两名篮球运动员都参加了场比赛,他们所有比赛得分的情况如下:

甲:

乙: .

(1)求甲、乙两名运动员得分的中位数.

(2)分别求甲、乙两名运动员得分的平均数、方差,你认为哪位运动员的成绩更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,分别从集合中随机取一个元素.落在直线为事件,若事件的概率最大,则的取值可能是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】任意实数,定义,设函数,数列是公比大于0的等比数列,且,则____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求曲线在点处的切线方程;

(2)当时,求证:

(3)讨论函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线:为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.

(1)说明是哪一种曲线,并将的方程化为极坐标方程;

(2)若直线的方程为,设的交点为的交点为,若的面积为,求的值.

查看答案和解析>>

同步练习册答案