精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)当m=3时,求函数f(x)的最大值;
(2)解关于x的不等式f(x)≥0.

【答案】
(1)解:当m=3时,f(x)=|x﹣3|﹣2|x﹣1|,

即f(x)=

∴当x=1时,函数f(x)的最大值f(1)=1+1=2


(2)解:∵f(x)≥0,

∴|x﹣m|≥2|x﹣1|,

两边平方,化简得[x﹣(2﹣m)][3x﹣(2+m)]≤0,

令2﹣m= ,解得m=1,

下面分情况讨论:

①当m>1时,不等式的解集为[2﹣m, ];

②当m=1时,不等式的解集为{x|x=1};

③当m<1时,不等式的解集为[ ,2﹣m]


【解析】(1)通过令m=3,然后去绝对值符号,对于分段函数取最大值即可;(2)通过对|x﹣m|≥2|x﹣1|两边平方,化简得[x﹣(2﹣m)][3x﹣(2+m)]≤0,比较2﹣m与 的大小,分类讨论即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 = ﹣…+(﹣1)n+1 ,求数列{bn}的通项公式;
(3)在(2)的条件下,设cn=2n+λbn , 问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E: + =1(a>b>0)的左右焦点分别为F1 , F2
(Ⅰ)若椭圆E的长轴长、短轴长、焦距成等差数列,求椭圆E的离心率;
(Ⅱ)若椭圆E过点A(0,﹣2),直线AF1 , AF2与椭圆的另一个交点分别为点B,C,且△ABC的面积为 ,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中P﹣ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,E、F,分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)在线段AB上是否存在点G,使得二面角C﹣PD﹣G的余弦值为 ,若存在,请求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:

信息技术

生物

化学

物理

数学

周一

周三

周五

根据上表:
(1)求数学辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三个连续的自然数?若存在,求△ABC的周长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC的四个顶点都在球O的球面上,已知PA,PB,PC两两垂直,PA=1,PB+PC=4,当三棱锥的体积最大时,球心O到平面ABC的距离是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;
(2)设a1= ,当n∈N* , 且n≥2时,曲线 的焦距为an , 如果A={a1 , a2 , …,an},B= ,设A+B中的所有元素之和为Sn , 对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式Sm+Sn﹣λSk>0恒成立,求实数λ的最大值;
(3)若整数集合A1A1+A1 , 则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(cosθ,sinθ), =(﹣ );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

查看答案和解析>>

同步练习册答案