精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,解不等式
(2)当时,恒成立,求的取值范围.

(1);(2).

解析试题分析:(1)利用零点分段法,去分为.三种情况绝对值,在每种情况下解不等式;求三次交集,最后再求一次并集,属于基础问题,关键是把绝对值去掉,并且不要忘记求交集;
(2)当时,将其中一个绝对值去掉,问题转化为恒成立,,利用公式将绝对值去掉,并且反解,转化为恒成立的最值问题,因为.,所以只能大于等于的最大值.此题属于基础题型.
试题解析:(1)                    2分
时,,即,解得
时,,即,解得
时,,即,解得
不等式的解集为                      5分
(2)恒成立
                          10分
考点:1解不等式;2.恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知a,b,cR,a2+2b2+3c2=6,求a+b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.
(1)求a的值,
(2)若≤k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为,若存在常数,使得对一切实数均成立,则称为“圆锥托底型”函数.
(1)判断函数是否为“圆锥托底型”函数?并说明理由.
(2)若是“圆锥托底型” 函数,求出的最大值.
(3)问实数满足什么条件,是“圆锥托底型” 函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,x,y均为正数且>,x>y.
求证:>.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c为实数,且a+b+c+2-2m=0,a2+b2+c2+m-1=0.
(1)求证:a2+b2+c2.
(2)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a,b,c满足a+b+c=2,求a2+2b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)解关于x的不等式g(x)≥f(x)-|x-1|;
(2)如果对?x∈R,不等式g(x)+cf(x)-|x-1|恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a,b,c均为正数,且a+b+c=1,证明:
(Ⅰ)ab+bc+ac
(Ⅱ)

查看答案和解析>>

同步练习册答案