【题目】如图,椭圆的左右焦点、恰好是等轴双曲线的左右顶点,且椭圆的离心率为,是双曲线上异于顶点的任意一点,直线和与椭圆的交点分别记为、和、.
(1)求椭圆的方程;
(2)设直线、的斜率分别为、,求证:为定值;
(3)若存在点满足,试求的大小.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.
(1)求椭圆的方程;
(2)点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点, 的延长线与椭圆交于点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系的极坐标方程为,直线l的参数方程为,(其中为参数)直线l与交于A,B两个不同的点.
求倾斜角的取值范围;
求线段AB中点P的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,已知都是边长为的等边三角形,为中点,且平面,为线段上一动点,记.
(1)当时,求异面直线与所成角的余弦值;
(2)当与平面所成角的正弦值为时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的上顶点为A,右顶点为B.已知(O为原点).
(1)求椭圆的离心率;
(2)设点,直线与椭圆交于两个不同点M,N,直线AM与x轴交于点E,直线AN与x轴交于点F,若.求证:直线l经过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com