精英家教网 > 高中数学 > 题目详情
7.已知点P(x,y)在圆x2+y2-4x-2y+4=0上,则$\frac{y}{x}$的最大值和最小值分别是(  )
A.1,$\frac{1}{3}$B.$\frac{4}{3}$,0C.$\frac{4}{3}$,-$\frac{4}{3}$D.2,2

分析 设k=$\frac{y}{x}$,即kx-y=0,利用直线和圆的位置关系即可得到结论.

解答 解:设k=$\frac{y}{x}$,即kx-y=0,
圆的标准方程为(x-2)2+(y-1)2=1,圆心坐标为(2,1),半径R=1,
则圆心到直线的距离d≤R,
即$\frac{|2k-1|}{\sqrt{{k}^{2}+1}}$≤1,
化简得3k2-4k≤0,
解得0≤k≤$\frac{4}{3}$,
故$\frac{y}{x}$的最大值是$\frac{4}{3}$,最小值为0.
故选:B.

点评 本题主要考查直线和圆的方程的应用,根据圆心到直线的距离和半径之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=lnx+2x-6零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数$z=\frac{5+3i}{1-i}$,则下列说法正确的是(  )
A.z的虚部为4iB.z的共轭复数为1-4i
C.|z|=5D.z在复平面内对应的点在第二象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,PA⊥BC,AB⊥AC,PA=1,BC=2.D、E、F分别是棱PA、PB、PC的中点,连接DE、DF、EF.
(1)求证:PA⊥平面ABC;
(2)求三棱锥P-ABC的体积最大值;
(3)当三棱锥P-ABC的体积取最大值时,求证:平面AEF⊥平面PEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点($\sqrt{3}$,-1)且与圆x2+y2=4相切的直线方程是(  )
A.$\sqrt{3}$x+y-4=0B.x-$\sqrt{3}$y-4=0C.x-$\sqrt{3}$y-2=0D.$\sqrt{3}$x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A,B分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是C上一点,且直线AP,BP的斜率之积为2,则C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sin(2π-α)=$\frac{4}{5}$,α∈($\frac{3π}{2}$,2π),则$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义数列{xn}:x1=$\root{3}{3}$,x2=($\root{3}{3}$)${\;}^{\root{3}{3}}$,…,xn=(xn-1)${\;}^{\root{3}{3}}$(n∈N,且n>1),则使xn是整数的n的最小值是(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在几何体ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,点D在底面ABC上的射影O为底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)证明:A,D,E,O四点共面;
(2)求几何体ABCDE的体积.

查看答案和解析>>

同步练习册答案