A. | 0 | B. | 3 | C. | 4 | D. | 5 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$对应的平面区域,
由z=y-x,得y=x+z,
平移直线y=x+z,由图象可知当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=0}\\{x+y=3}\end{array}\right.$,
解得A(0,3),
此时z的最大值为:3-0=3.
故选:B.
点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值,利用数形结合是解决线性规划问题中的基本方法.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}c{m^3}$ | B. | 1cm3 | C. | $\frac{3}{2}c{m^3}$ | D. | 3cm3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1] | C. | [-2,$\frac{1}{4}$] | D. | [$\frac{1}{3}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{17}{16}$ | B. | $\frac{9}{8}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{2\sqrt{3}-\sqrt{6}}}{2}$ | B. | $\sqrt{2}-1$ | C. | $\frac{{\sqrt{6}-\sqrt{3}}}{2}$ | D. | $\sqrt{6}-\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com