精英家教网 > 高中数学 > 题目详情
精英家教网已知点P是双曲线C:
x2
8
-
y2
4
=1上的动点,F1,F2分别是双曲线C的左、右焦点O为坐标原点,则
|PF1|+|PF2|
|OP|
的取值范围是(  )
A、[0,6]
B、(2,
6
]
C、(
1
2
6
2
]
D、[0,
6
2
]
分析:设P(x,y) 则y2=
x2
2
-4,e=
6
2
,由焦半径公式能够得出|PF1|=ex+a,|PF2|=ex-a,代入所求的式子并化简得到
6
3
2
-
4
x2
,再由双曲线中x2≥8,求出范围即可.
解答:解:设P(x,y) x>0,由焦半径公式|PF1|=ex+a,|PF2|=ex-a,
|PF1|+|PF2|
|OP|
=
ex+a+ex-a
x2+y2
   (y2=
x2
2
-4,e=
6
2
),
则原式=
2ex
x2+
x2
2
-4 
=
6
x
3
2
x2-4
=
6
3
2
4
x2
,又因为双曲线中x2≥8.
所以
6
3
2
-
4
x2
∈(2,
6
].
同理当x<0时,|PF1|=a-ex,|PF2|=-ex-a,
仍可推出
|PF1|+|PF2|
|OP|
=
6
3
2
-
4
x2
∈(2,
6
].
即推出
|PF1|+|PF2|
|OP|
的取值范围为(2,
6
].
点评:本题考查了双曲线的性质,由焦半径公式得到|PF1|=ex+a,|PF2|=ex-a是解题的关键,要注意分x>0和x<0两种情况作答,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•婺城区模拟)已知点P是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一点,F1,F2是双曲线的左、右两个焦点,且PF1⊥PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一动点,且点P与双曲线实轴两顶点连线的斜率之积为2,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知点P是双曲线C:
x2
3
-
y2
6
=1上一点,过P作C的两条逐渐近线的垂线,垂足分别为A,B两点,则
PA
PB
等于(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年海南省琼海市高三下学期第一次月考理科数学试卷(解析版) 题型:选择题

已知点P是双曲线C左支上一点,F1F2是双曲线的左、右两个焦点,且PF1PF2PF2与两条渐近线相交于MN两点(如图),点N恰好平分线段PF2,则双曲线的离心率是(   )

A.             B.2                C.              D.

 

查看答案和解析>>

同步练习册答案