精英家教网 > 高中数学 > 题目详情
已知函数
(1)求f(x)的最小正周期;
(2)求使f(x)≥0成立的x的取值集合;
(3)若不等式|f(x)-m|<2在上恒成立,求实数m的取值范围.
【答案】分析:利用二倍角的余弦函数公式化简函数解析式中的第一项,然后给化简后的后两项提取2,利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,
(1)由化简后的解析式,找出ω的值,代入周期公式T=,即可求出函数的最小正周期;
(2)令化简后的解析式大于等于0,求出正弦函数的值域,根据正弦函数的图象与性质,列出关于x的不等式,求出不等式的解集即可得到满足题意的集合;
(3)由x的范围,求出这个角的范围,利用正弦函数的值域得出函数f(x)的最大值及最小值,不等式|f(x)-m|<2在上恒成立,即f(x)-2<m<f(x)+2在上恒成立,根据函数的最值,即可得到m的范围.
解答:解:(1分)
=(2分)
=,(3分)
(1);(4分)
(2)(5分)
(6分)

∴使f(x)≥0成立的x的取值集合为;(7分)
(3)∵

,(8分)
∴[f(x)]max=3,[f(x)]min=2,
∴|f(x)-m|<2在上恒成立,
即f(x)-2<m<f(x)+2在上恒成立,(9分)
∴[f(x)]max-2<m<[f(x)]min+2,
∴1<m<4,
∴实数m的取值范围为[1,4].(10分)
点评:此题考查了三角函数的周期性及其求法,正弦函数的定义域及值域,正弦函数的单调性,以及不等式恒成立满足的条件,利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年浙江省杭州市富阳市场口中学高三(上)8月月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最大值及取得最大值时的x集合;
(2)设△ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0.求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(f(3))的值;
(2)判断函数在(1,+∞)上单调性,并用定义加以证明.
(3)当x取什么值时,的图象在x轴上方?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期和值域;
(2)若x=x为f(x)的一个零点,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省莆田市仙游一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间;
(3)函数f(x)的图象经过怎样的平移才能使其对应的函数成为奇函数?

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市赣榆高级中学高三3月调研数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期及对称中心;
(2)若,求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案