如图,四棱锥的底面是矩形,底面,P为BC边的中点,SB与平面ABCD所成的角为45°,且AD=2,SA=1.
(1)求证:平面SAP;
(2)求二面角A-SD-P的大小.
(2)
证明:(1)因为底面,
所以,∠SBA是SB与平面ABCD所成的角…………………….……….1分
由已知∠SBA=45°,所以AB=SA=1
易求得,AP=PD=,…………………………………….…..………….2分
又因为AD=2,所以AD2=AP2+PD2,所以.………….…….3分
因为SA⊥底面ABCD,平面ABCD,
所以SA⊥PD, …………….……………………….…....4分
由于SA∩AP=A 所以平面SAP. …………………………….5分
(2)设Q为AD的中点,连结PQ, ……………………………….………6分
由于SA⊥底面ABCD,且SA平面SAD,则平面SAD⊥平面PAD……..7分
因为PQ⊥AD,所以PQ⊥平面SAD
过Q作QR⊥SD,垂足为R,连结PR,
由三垂线定理可知PR⊥SD,
所以∠PRQ是二面角A-SD-P的平面角. …9分
容易证明△DRQ∽△DAS,则
因为DQ=1,SA=1,,所以….……….10分
在Rt△PRQ中,因为PQ=AB=1,所以………11分
所以二面角A-SD-P的大小为.……………….…….…….12分
或:过A在平面SAP内作,且垂足为H,在平面SAD内作,且垂足为E,连接HE,平面SAP。平面SDP…………7分
∴HE为AE在平面SPD内的射影,∴由三垂线定理得
从而是二面角A-SD-P的平面角……………………………….9分
在中,,在中,,
. ………………………………….11分
即二面角的大小为……………………………12分
科目:高中数学 来源: 题型:
(09年山东实验中学诊断三理)(13分)如图:四棱锥的底面是提醒,腰,平分且与垂直,侧面都垂直于底面,平面与底面成60°角
(1)求证:;
(2)求二面角的大小
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三第八次月考文科数学试卷 题型:解答题
如图,四棱锥的底面是平行四边形,平面,,,
点是上的点,且.
(Ⅰ)求证:;
(Ⅱ)求的值,使平面;
(Ⅲ)当时,求三棱锥与四棱锥的体积之比.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三上学期摸底理科数学 题型:解答题
((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面,,、分别是棱、的中点.
(1)求证:; (2) 求直线与平面所成的角的正切值
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(本小题满分12 分)
如图,四棱锥的底面是边长为的菱形,
,平面,,为的中点,O为底面对角线的交点;
(1)求证:平面平面;
(2)求二面角的正切值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com