精英家教网 > 高中数学 > 题目详情
已知椭圆C:
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围
(1)(2)k

试题分析:(1)椭圆C: 
(2)显然直线x=0不满足条件,可设直线l:y="kx+2" ,A(),B()

(1)



=+(>0
所以-2<k<2……… (2)由 (1)(2)得k
点评:主要是考查了直线于椭圆的位置关系的运用,通过联立方程组来得到求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若双曲线的离心率等于,直线与双曲线的右支交于两点.
(1)求的取值范围;
(2)若,点是双曲线上一点,且,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线方程为x-2y=1.则它的右焦点坐标是(  )
A.(,0)B.(,0)C.(,0)D.(,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为

轴被抛物线截得的线段长等于的长半轴长.
(1)求的方程;
(2)设轴的交点为,过坐标原点的直线
相交于两点,直线分别与相交于.   
①证明:为定值;
②记的面积为,试把表示成的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的渐近线方程为,它的一个焦点是,则双曲线的标准方程是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆:和圆,过椭圆上一点引圆的两
条切线,切点分别为. 若椭圆上存在点,使得,则椭圆离心率的取值范围
是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,若cam的等比中项,n2是2m2c2的等差中项,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.
(1)求椭圆的方程;(2)求直线的方程.

查看答案和解析>>

同步练习册答案