精英家教网 > 高中数学 > 题目详情
已知命题p:函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,命题q:函数g(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值又有极小值,求使命题p、q中有且只有一个为真命题时实数a的取值范围.
分析:根据对数函数的单调性,复合函数的单调性,对数函数的定义域,我们可以求出命题q为真命题时,参数a的取值范围,根据函数取极值的条件,可们命题q真命题时,参数a的取值范围,进而由命题p、q中有且只有一个为真命题,我们分命题p真q假和命题p假q真两种情况,分类讨论实数a的取值范围,最后综合讨论结果,即可得到答案.
解答:解:若命题p:函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,为真命题
则a>-3
若命题q:函数g(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值又有极小值,为真命题
则a<0或a>9
又∵命题p、q中有且只有一个为真命题
当命题p真q假时,0≤a≤9
当命题p假q真时,a≤-3
故使命题p、q中有且只有一个为真命题时实数a的取值范围为(-∞,-3]∪[0,9]
点评:本题考查的知识点是命题的真假判断与应用,对数函数的单调性,复合函数的单调性,对数函数的定义域,导数法在求函数的最值的应用,是函数问题与简易逻辑的综合应用,其中在确定命题p,q为真命题时,参数a的取值范围,难度比较大,也容易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(m-2)x为增函数,命题q:“?x0∈R,x02+2mx0+2-m=0”,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=x2-2x+
12
a
的图象与x轴有交点,命题q:f(x)=(2a-1)x为R上的减函数,则p是q的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=
1-x3
,实数m满足不等式f(m)<2,命题q:实数m使方程2x+m=0(x∈R)有实根.若命题p、q中有且只有一个真命题,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(a-1)x+a在(-∞,+∞)上是增函数;命题q:
32-a
>2
.若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(11+a-2a2x是R上单调递增的指数函数.
命题q:关于x的不等式x2-(3a+2)x+a2≥0的解集为R.
若命题“p或q”为真命题,且命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案