精英家教网 > 高中数学 > 题目详情

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

【答案】(1);(2).

【解析】

(1)根据公式计算出,可得;

(2)根据可得,再根据函数为增函数可得答案.

1)因为与温度可以用线性回归方程来拟合,设

所以

关于的线性回归方程为

2)由(1)可得

于是产卵数关于温度的回归方程为,

时,

时,

因为函数为增函数,

所以,气温在之间时,一只该品种昆虫的产卵数的估计范围是内的正整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆:的左、右焦点,且椭圆上的点到点的距离的最小值为.MN是椭圆上位于轴上方的两点,且向量与向量平行.

1)求椭圆的方程;

2)当时,求△的面积;

3)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为5.

1)求的值;

2)设动直线与抛物线相交于两点,问:在轴上是否存在与的取值无关的定点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上单调递增,求a的取值范围;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点.

1)若为线段上的动点,证明:平面平面

2)若为线段上的动点(不含),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

)设是函数的导函数,求函数在区间上的最小值;

)若,函数在区间内有零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)证明:在区间上有且仅有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:

若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};

若函数f(x)是偶函数,则f(|x|)=f(x);

若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;

若函数fx)存在反函数f1x),且f1x)与fx)不完全相同,则fx)与f1x)图象的公共点必在直线y=x上;

其中真命题的序号是 .(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案