精英家教网 > 高中数学 > 题目详情
16.设△ABC的内角A、B、C所对的边分别为a、b、c,且a+b=6,c=2,cosC=$\frac{7}{9}$.
(Ⅰ)求a、b的值;
(Ⅱ)求S△ABC

分析 (I)利用余弦定理可得ab,与a+b=6联立即可得出.
(II)利用三角形面积计算公式即可得出.

解答 解:(I)由余弦定理,c2=a2+b2-2abcosC=(a+b)2-2ab-2ab×$\frac{7}{9}$,∴22=62-$\frac{32}{9}$ab,解得ab=9.
联立$\left\{\begin{array}{l}{a+b=6}\\{ab=9}\end{array}\right.$,解得a=b=3.
(II)∵cosC=$\frac{7}{9}$,C∈(0,π).∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{4\sqrt{2}}{9}$.
∴S△ABC=$\frac{1}{2}absinC$=$\frac{1}{2}×3×3×\frac{4\sqrt{2}}{9}$=2$\sqrt{2}$.

点评 本题考查了余弦定理、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2-(a2-a)1nx-x(a≤$\frac{1}{2}$).
(1)当a=-1时,求函数y=f(x)的极值;
(2)讨论函数f(x)的单调性;
(3)设g(x)=a2lnx2-x,若f(x)>g(x)对?x>1恒成立.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD底面ABCD是矩形,侧棱PA⊥面ABCD,PA=1,AB=3,BC=4,则点P到直线BD的距离为(  )
A.$\frac{\sqrt{26}}{2}$B.$\frac{13}{5}$C.$\sqrt{10}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正三棱柱ABC-A1B1C1中,底面边长为2,异面直线A1B与B1C1所成角的大小为$arccos\frac{{\sqrt{5}}}{10}$.
(1)求侧棱AA1的长.
(2)求A1B与平面A1ACC1所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}=(6,x)$,$\overrightarrow{b}$=(2,-2),且($\overrightarrow{a}-\overrightarrow{b}$)$⊥\overrightarrow{b}$,则x的值是(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正方体AC1中,P为平面A1B1C1D1上一动点,P到棱BB1的距离等于它到平面AA1DD1的距离,则点P在平面A1B1C1D1上的轨迹可能是下面图象的哪一个?(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点A∈α,B∉α,C∉α,则平面ABC与平面α的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a、b、c,tanC=$\frac{sinA+sinB}{cosA+cosB}$.
(1)求角C的大小;
(2)若△ABC的外接圆直径为1,求△ABC面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的通项公式为${a_n}=\left\{{\begin{array}{l}{{2^n}({n为奇数})}\\{{3^n}({n为偶数})}\end{array}}\right.$,求数列{an}前2n项和为S2n

查看答案和解析>>

同步练习册答案