精英家教网 > 高中数学 > 题目详情
(2012•吉林二模)已知四面体P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=
3
AB,若四面体P-ABC的体积为
3
2
,则该球的体积为(  )
分析:设该球的半径为R,则AB=2R,2AC=
3
AB=
3
×2R
,故AC=
3
R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.
解答:解:设该球的半径为R,
则AB=2R,2AC=
3
AB=
3
×2R

∴AC=
3
R,
由于AB是球的直径,
所以△ABC在大圆所在平面内且有AC⊥BC,
在Rt△ABC中,由勾股定理,得:
BC2=AB2-AC2=R2
所以Rt△ABC面积S=
1
2
×BC×AC=
3
2
R2

又PO⊥平面ABC,且PO=R,四面体P-ABC的体积为
3
2

∴VP-ABC=
1
3
×R×
3
2
×R2
=
3
2

3
R3=9,R3=3
3

所以:球的体积V=
4
3
×πR3=
4
3
×π×3
3
=4
3
π.
故选D.
点评:本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设集合A={x|0≤x<1},B={x|1≤x≤2},函数f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,则x0的取值范围是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)△ABC内角A,B,C的对边分别是a,b,c,若c=2
3
b
sin2A-sin2B=
3
sinBsinC
,则A=
π
6
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)执行程序框图,若输出的结果是
15
16
,则输入的a为(  )

查看答案和解析>>

同步练习册答案