精英家教网 > 高中数学 > 题目详情

【题目】已知动直线垂直于轴,与椭圆交于两点,点在直线上,.

1)求点的轨迹的方程;

2)直线与椭圆相交于,与曲线相切于点为坐标原点,求的取值范围.

【答案】(1) ;(2)

【解析】

1)设出两点的坐标,根据对称性得到点坐标,利用平面向量数量积的坐标运算化简,求得两点坐标的关系,将点坐标代入椭圆方程,化简求得点的轨迹方程.

2)当直线斜率不存在时,根据椭圆的几何性质求得.当直线的斜率存在时,设出直线的方程,代入方程,利用判别式为零列出关系.将代入方程,化简后写出韦达定理,计算出的表达式,并利用换元法和二次函数的性质,求得的取值范围.

1)设,则由题知

,

在椭圆上,得,所以

故点的轨迹的方程为

2)当直线的斜率不存在时,的左(或右)顶点,也是的左(或右)焦点,所以

当直线的斜率存在时,设其方程为,

,所以

所以,当时,即时,取最大值,当时,即时,取最小值;综上:的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于任意,若数列满足,则称这个数列为“K数列”.

1)已知数列:1是“K数列”,求实数m的取值范围;

2)是否存在首项为-1的无穷等差数列为“K数列”,且其前n项和满足:,若存在,求出的通项公式;若不存在,请说明理由;

3)已知各项均为正整数的等比数列(至少有4项)为“K数列”,数列不是“K数列”,若,是否存在,使为“K数列”?若存在,请求出,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的图象经过变换后所得的图象对应的函数与的值域相同,则称变换的同值变换,下面给出了四个函数与对应的变换:①, 将函数的图象关于直线作对称变换;②, 将函数的图象关于轴作对称变换;③, 将函数的图象关于点作对称变换;④将函数的图象关于点作对称变换.其中的同值变换的有__________(写出所有符合题意的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象向右平移个单位长度,所得图象对应的函数为.

(1)求函数的表达式及其周期;

(2)求函数上的对称轴、对称中心及其单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,,平面底面.

1)求证:平面与平面不垂直;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知向量,设,向量

(1)若,求向量的夹角;

(2)若 对任意实数都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个角形海湾(常数为锐角).拟用长度为为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区,其中;方案二:如图2,围成三角形养殖区,其中.

1)求方案一中养殖区的面积

2)求方案二中养殖区的最大面积(用表示);

3)为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为F1F2,且过点

1)求椭圆的标准方程;

2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点BAO的延长线与椭圆交于点C,求ABC面积的最大值,并写出取到最大值时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ABCDADDCCB1,∠BCD120°,四边形BFED为矩形,平面BFED⊥平面ABCDBF1.

(1)求证:AD⊥平面BFED

(2)P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.

查看答案和解析>>

同步练习册答案