精英家教网 > 高中数学 > 题目详情

【题目】在平面立角坐标系中,过点的圆的圆心轴上,且与过原点倾斜角为的直线相切.

(1)求圆的标准方程;

(2)在直线上,过点作圆的切线,切点分别为,求经过四点的圆所过的定点的坐标.

【答案】(1)(2)经过四点的圆所过定点的坐标为

【解析】

(1)先算出直线方程,根据相切和过点,圆心轴上联立方程解得答案.

(2) 取线段的中点 ,经过四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为,将圆方程表示出来,联立方程组解得答案.

(1)由题意知,直线的方程为,整理为一般方程可得

由圆的圆心在轴上,可设圆的方程为

由题意有,解得:

故圆的标准方程为.

(2)由圆的几何性质知,,取线段的中点,由直角三角形的性质可知,故经过四点的圆是以线段为直径的圆,

设点的坐标为,则点的坐标为

则以为直径的圆的方程为:,整理为

可得.

,解得

故经过四点的圆所过定点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数y=3cos2x的图象,只需把函数y=3sin(2x+ )的图象上所有的点(
A.向右平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向左平移移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.

1)求圆的方程;

2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C1的方程为ρsin(θ+ )+2 =0,曲线C2的参数方程为 (θ为参数).
(1)将C1的方程化为直角坐标方程;
(2)若点Q为C2上的动点,P为C1上的动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】土笋冻是闽南种广受欢迎的特色传统风味小吃某小区超市销售一款土笋冻,进价为每个15元,售价为每个20元.销售的方案是当天进货,当天销售,未售出的全部由厂家以每个10元的价格回购处理.根据该小区以往的销售情况,得到如图所示的频率分布直方图:

(1)估算该小区土笋冻日需求量的平均数(同一组中的数据用该组区间的中点值代表);

(2)已知该超市某天购进了150个土笋冻,假设当天的需求量为销售利润为元.

(i)求关于的函数关系式;

(ii)结合上述频率分布直方图,以额率估计概率的思想,估计当天利润不小于650元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正整数数列满足,对于给定的正整数,若数列中首个值为1的项为,我们定义,则_____.设集合,则集合中所有元素的和为_____

查看答案和解析>>

同步练习册答案