精英家教网 > 高中数学 > 题目详情

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);
(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.

(1);(2)

解析试题分析:(1)在频率分步直方图中,最高矩形的中点横坐标代表数据的众数;各个矩形的面积和为1,中位数是面积等分为的轴线和横轴的交点;平均数是各矩形的面积乘以相应矩形中点横坐标的累加值;(2)基本事件总数有无限多个,故可以考虑几何概型.可以看成平面中的点,试验的全部结果构成平面区域,而事件A发生的前提是,利用面积的比表示事件A发生的概率
试题解析:(1)                                                  2分
由频率分布直方图可知,             3分


 
解得分即               6分
(2)设报纸送达时间为                       7分
则小明父亲上班前能取到报纸等价于
,                                                   10分
如图可知,所求概率为                                   13分
考点:1、频率分布直方图;2、众数和中位数;3、几何概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

下表是某市从3月份中随机抽取的天空气质量指数()和“”(直径小于等于微米的颗粒物)小时平均浓度的数据,空气质量指数()小于表示空气质量优良.

日期编号










空气质量指数(










小时平均浓度(










 
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件为“抽取的两个日期中,当天‘’的小时平均浓度不超过”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商店试销某种商品20天,获得如下数据:

日销售量(件)
0
1
2
3
频数
1
5
9
5
 
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。
(1)求当天商品不进货的概率;
(2)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)从区间内任取一个实数,设事件={函数在区间上有两个不同的零点},求事件发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为)得到的点数分别为,记事件{恒成立},求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的期望与方差比较两名射手的射击水平.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n=1,2,3)关时,需要抛掷n次骰子,当n次骰子面朝下的点数之和大于n2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.
(1)求仅闯过第一关的概率;
(2)记成功闯过的关数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有两个定点投篮位置,在点投中一球得2分,在点投中一球得3分.其规则是:按先的顺序投
篮.教师甲在点投中的概率分别是,且在两点投中与否相互独立.
(1)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;
(2)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一盒中有9个正品和3个次品零件,每次取一个零件,如果取出的是次品不再放回,求在取得正品前已取出的次品数X的概率分布,并求P.

查看答案和解析>>

同步练习册答案