精英家教网 > 高中数学 > 题目详情
5.若关于x的方程$\sqrt{-{x}^{2}+4x-3}$=mx+m-1有两个不同的实数根,则实数m的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[$\frac{1}{2}$,$\frac{3}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.[$\frac{1}{4}$,$\frac{3}{4}$)

分析 构造函数g(x)=mx+m-1,f(x)=$\sqrt{-{x}^{2}+4x-3}$,在同一坐标系中作出二函数的图象,数形结合即可求得实数m的取值范围.

解答 解:令g(x)=mx+m-1,f(x)=$\sqrt{-{x}^{2}+4x-3}$,
∵方程mx+3m=$\sqrt{-{x}^{2}+4x-3}$有两个不同的实数解,
∴g(x)=mx+m-1与f(x)=$\sqrt{-{x}^{2}+4x-3}$有两个不同的交点,
在同一坐标系中作图如下:

∵g(x)=mx+m-1为过定点(-1,-1)的直线,
当直线g(x)=mx+m-1经过(1,0),即m=$\frac{1}{2}$时,
显然g(x)=mx+m-1与f(x)=$\sqrt{-{x}^{2}+4x-3}$有两个不同的交点;
当直线g(x)=mx+m-1与曲线f(x)=$\sqrt{-{x}^{2}+4x-3}$相切时,
$\frac{|2m+m-1|}{\sqrt{{m}^{2}+1}}=1$,解得m=$\frac{3}{4}$或m=0(舍),
∴m∈[$\frac{1}{2}$,$\frac{3}{4}$),
故选:B

点评 本题考查根的存在性及根的个数判断,考查等价转化思想与数形结合思想的综合应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知三棱锥的三视图如图所示,其中俯视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=2,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{$\frac{{a}_{n}}{{b}_{n}}$}是首项为1,公比为$\frac{1}{3}$的等比数列,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.甲乙两个竞赛队都参加了6场比赛,比赛得分情况的经营如图如图(单位:分)),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学习小组20名学生一次数学考试成绩(单位:分)频率直方图如图所示,已知前三个矩形框垂直于横轴的高度成等差数列.
(1)求频率分布直方图中a的值;
(2)分别求出成绩落在[50,60)与[80,90)中的学生人数;
(3)从成绩在[50,60)与[80,90)中的学生中人选2人,求此2人的成绩相差20分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若点A(1,1),B(2,m)都是方程ax2+xy-2=0的曲线上,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“a≤0”是“函数f(x)=ax+lnx存在极值”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知命题p:?x∈R,x2-2x+1>0,则¬p是?x>1,x2-2x+1≤0.

查看答案和解析>>

同步练习册答案