精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=2AD=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE,构成四棱锥A1﹣BCDE,若M为线段A1C的中点,在翻转过程中有如下4个命题: ①MB∥平面A1DE;
②存在某个位置,使DE⊥A1C;
③存在某个位置,使A1D⊥CE;
④点A1在半径为 的圆面上运动,
其中正确的命题个数是(

A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:取CD中点F,连接MF,BF,则MF∥DA1 , BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故①正确 ∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,
∴存在某个位置,使DE⊥A1C不正确,故②不正确.
由CE⊥DE,可得平面A1DE⊥平面ABCD时,A1D⊥CE,故②正确.
∵DE的中点O是定点,OA1= ,∴A1是在以O为圆心, 为半径的圆上,故④正确,
故选:C.

【考点精析】通过灵活运用棱锥的结构特征,掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的图象与g(x)的图象关于直线x= 对称,则g(x)的图象的一个对称中心为(
A.( ,0)
B.( ,0)
C.( ,0)
D.( ,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+|x|﹣|x﹣5|+2.
(1)求不等式f(x)<0的解集;
(2)若关于x的不等式|f(x)|≤m的整数解仅有11个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Г: (a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,F2与椭圆上点的连线的中最短线段的长为 ﹣1.
(1)求椭圆Г的标准方程;
(2)已知Г上存在一点P,使得直线PF1 , PF2分别交椭圆Г于A,B,若 =2 (λ>0),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数,.

)求的定义域;

)判断的奇偶性并予以证明;

)当时,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥中, 中点, 中点,且为正三角形.

(1)求证: 平面

(2)若 ,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,(  )

A. p1<p2<p3 B. p2<p1<p3

C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的表面积为( )

A.45
B.
C.
D.60

查看答案和解析>>

同步练习册答案