精英家教网 > 高中数学 > 题目详情
与抛物线相切倾斜角为的直线轴和轴的交点分别是A和B,那么过A、B两点的最小圆截抛物线的准线所得的弦长为
A.4                B.2            C.2            D. 
C

试题分析:设直线AB:y=-x+b,与抛物线联立得到判别式为零,即可知,则直线AB:y=-x-2,然后得到点A(-2,0),B(0,-2),则以AB为直径的圆(x+2)x+(y+2)y=2,而抛物线的准线方程为x=-2,则利用直线与圆的位置关系可知,相交所得的弦长为2,故选C.
点评:解决的关键是求解得到抛物线的切线方程,然后分别求解以AB为直径的圆与抛物线准线的相交的弦长,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

分别为椭圆的左、右两个焦点.
(Ⅰ) 若椭圆C上的点两点的距离之和等于4, 写出椭圆C的方程和离心率.;
(Ⅱ) 若M、N是椭圆C上关于原点对称的两点,点P是椭圆上除M、N外的任意一点, 当直线PM、PN的斜率都存在, 并记为时, 求证: ·为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为准线的抛物线的标准方程为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过点,并且对称轴都在坐标轴上的等轴双曲线的方程为(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P在抛物线上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(Ⅰ)判断曲线的切线能否与曲线相切?并说明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线虚轴的一个端点为,两个焦点为,则双曲线的离心率为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以双曲线的离心率为半径,右焦点为圆心的圆与双曲线的渐近线相切,则的值为(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案