精英家教网 > 高中数学 > 题目详情

【题目】定义在(﹣1,1)上的函数f(x)是奇函数,且函数f(x)在(﹣1,1)上是减函数,则满足f(1﹣a)+f(1﹣a2)<0的实数a的取值范围是(
A.[0,1]
B.(﹣2,1)
C.[﹣2,1]
D.(0,1)

【答案】D
【解析】解:∵函数f(x)是在(﹣1,1)上奇函数,
∴不等式f(1﹣a)+f(1﹣a2)<0等价于f(1﹣a2)<﹣f(1﹣a)=f(a﹣1),
∵函数f(x)在(﹣1,1)上是减函数,
,解得0<a<1,
则实数a的取值范围是(0,1),
故选:D.
【考点精析】解答此题的关键在于理解奇偶性与单调性的综合的相关知识,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方形沿对角线折叠,使得平面平面,若平面,且.

(1)求证: 平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 f(x)= 在[﹣2,3]上的最大值为2,则实数a的取值范围是(
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.

(1)若出现故障的机器台数为,求的分布列;

(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?

(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.求:
(Ⅰ)直线l的方程;
(Ⅱ)直线l与两坐标轴围成的三角形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从花市购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.

(1)若花店一天购进17支玫瑰花,求当天的利润(单位:元),关于当天需求量(单位:枝, 的解析式;

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:

日需求量

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

①假设花店在这100天内每天购进16枝玫瑰花或每天购进17枝玫瑰花,分别计算这100天花店的日利润(单位:元)的平均数,并以此作为决策依据,花店在这100天内每天购进16枝还是17枝玫瑰花?

②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断f(x)奇偶性;
(3)讨论函数f(x)在[2,+∞)上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最大值;

(2)设 其中,证明: <1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为(
A.12
B.1 6
C.18
D.20

查看答案和解析>>

同步练习册答案