如图,与是均以为斜边的等腰直角三角形,,分别为,,的中点,为的中点,且平面.
(1)证明:平面;
(2)求二面角的余弦值.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,PD=AB=2, E,F,G分别是PC,PD,BC的中点.
(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
是双曲线 上一点,、分别是双曲线的左、右顶点,直线,的斜率之积为.
(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于,两点,为坐标原点,为双曲线上一点,满足,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中
点.
(1)求证:平面AGC⊥平面BGC;
(2)求GB与平面AGC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com