精英家教网 > 高中数学 > 题目详情
11.已知$\overrightarrow a=(5,6),\overrightarrow b=(sinα,cosα)$,且$\overrightarrow a∥\overrightarrow b$,则tanα=(  )
A.$-\frac{5}{6}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

分析 由$\overrightarrow a∥\overrightarrow b$,故可由向量共线的条件建立方程,解出角的正切,选出正确选项.

解答 解:$\overrightarrow a=(5,6),\overrightarrow b=(sinα,cosα)$,且$\overrightarrow a∥\overrightarrow b$,
∴5cosα=6sinα,
∴tanα=$\frac{5}{6}$,
故选:D.

点评 本题考查平面向量共线的坐标表示及三角方程化简求值,解题的关键是熟练掌握向量共线的坐标表示公式,及三角函数的商数关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.△ABC中,已知a,b,c分别为角A,B,C的对边且∠A=60°,若${S_{△ABC}}=\frac{{3\sqrt{3}}}{2}$,且2sinB=3sinC,则△ABC的周长等于(  )
A.$5+\sqrt{7}$B.12C.10+$\sqrt{7}$D.5+$2\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平行四边形ABCD的对角线分别为AC,BD,且$\overrightarrow{AE}$=2$\overrightarrow{EC}$,点F是BD上靠近D的四等分点,则(  )
A.$\overrightarrow{FE}$=-$\frac{1}{12}$$\overrightarrow{AB}$-$\frac{5}{12}$$\overrightarrow{AD}$B.$\overrightarrow{FE}$=$\frac{1}{12}$$\overrightarrow{AB}$-$\frac{5}{12}$$\overrightarrow{AD}$C.$\overrightarrow{FE}$=$\frac{5}{12}$$\overrightarrow{AB}$-$\frac{1}{12}$$\overrightarrow{AD}$D.$\overrightarrow{FE}$=-$\frac{5}{12}$$\overrightarrow{AB}$-$\frac{1}{12}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点P是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0,xy≠0)上的动点,F1(-c,0)、F2(c,0)为椭圆对左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是(0,c).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α为锐角,cos(α$+\frac{4n+1}{4}$π)=$\frac{1}{2}$,(n∈Z),求cos(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$sinα=-\frac{5}{13},且α$为第四象限角,则$tan({α+\frac{π}{4}})$的值等于(  )
A.$\frac{7}{17}$B.$\frac{17}{7}$C.$-\frac{5}{12}$D.$\frac{10}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y=ax2+bx+c通过点P(1,1),且在点Q(2,-1)处的切线平行于直线y=x,则抛物线方程为(  )
A.y=3x2-11x+9B.y=3x2+11x+9C.y=3x2-11x-9D.y=-3x2-11x+9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=2x+1+m的图象不经过第二象限,则m的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆C的方程为:x2+y2-6x-8y+23=0,则圆心C到点A(-1,1)的距离为(  )
A.$\sqrt{13}$B.4C.3$\sqrt{2}$D.5

查看答案和解析>>

同步练习册答案