精英家教网 > 高中数学 > 题目详情

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

根据(1)中所建立的回归方程预测该地区年该农产品的产量;

为何值时,销售额最大?

【答案】(1);(2)①,②

【解析】试题分析:(1)由题意,根据表中的数据,利用公式,求得的值,进而得到,即可得到回归直线方程;

(2)①由(1)中的回归方程,代入时,求得的值即可;

②当年产量为时,得到销售额的表达式,代入时,即可求解的最大值,即可得到销售额的最大值

试题解析:

(1)由题,

所以,又,得

所以关于的线性回归方程为

(2)①由(1)知,当时,

即2018年该农产品的产量为万吨.

当年产量为时,销售额(万元),

时,函数取得最大值,又因

计算得当,即时,即2018年销售额最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.

1)分别求甲队以303132获胜的概率;

2)若比赛结果为3031,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1.求甲队得分X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数kR),且满足f(﹣1)=f(1).

(1)求k的值;

(2)若函数y=fx)的图象与直线没有交点,求a的取值范围;

(3)若函数x[0,log23],是否存在实数m使得hx)最小值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数fx)满足fx)=f(2-x),当x∈[0,1]fx)=x2,则函数gx)=|sin(πx)|-fx)在区间[-1,3]上的所有零点的和为(  )

A. 6 B. 7 C. 8 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=Asin(x+),若f(0)=

(Ⅰ)求A的值;

(Ⅱ)将函数fx)的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数gx)的图象.

i)写出gx)的解析式和它的对称中心;

ii)若α为锐角,求使得不等式g(α-)<)成立的α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若在定义域内存在实数x0,使得fx0+1)=fx0)+f(1)成立,则称函数fx)有“漂移点”.

(1)用零点存在定理证明:函数fx)=x2+2x在[0,1]上有“漂移点”;

(2)若函数gx)=lg()在(0,+∞)上有“漂移点”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.

(1)求直线l的方程.

(2)若点P(a,1)到直线l的距离为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是(  )
A.①和②均为真命题
B.①和②均为假命题
C.①为真命题,②为假命题
D.①为假命题,②为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l1 , l2分别是函数f(x)= 图象上点P1 , P2处的切线,l1与l2垂直相交于点P,且l1 , l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(  )
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

同步练习册答案