精英家教网 > 高中数学 > 题目详情

已知△ABC的三个内角满足:sinA=sinC•cosB,则三角形的形状为


  1. A.
    正三角形
  2. B.
    直角三角形
  3. C.
    等腰直角三角形
  4. D.
    等腰三角形或直角三角形
B
分析:由正弦定理可得cosB=,再由余弦定理可得cosB=,由=化简可得a2+b2=c2,从而可判断△ABC的形状.
解答:△ABC满足sinA=sinC•cosB,由正弦定理可得 a=c•cosB,
∴cosB=
再由余弦定理可得cosB=
=,即2a2=a2+c2-b2
∴a2+b2=c2
故△ABC为直角三角形.
故选B.
点评:本题考查正弦定理、余弦定理的应用,得到=是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的A、B、C及平面内一点P满足
PA
+
PB
+
PC
=
AB
,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及平面内一点P,若
PA
+
PB
+
PC
=
AB
,则点P与△ABC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点ABC及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ满足:
AB
+
AC
=λ
AP
,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆
x2
16
+
y2
4
=1
内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步练习册答案