精英家教网 > 高中数学 > 题目详情
对于任意实数a、b、c,给定下列四个命题,其中真命题的个数为(  )
(1)“a=b”是“ac=bc”的充要条件;
(2)“a+5是无理数”是“a是无理数”的充要条件;
(3)“a>b”是“a2>b2”的充要条件;
(4)“a<5”是“a<3”的必要非充分条件.
分析:本题考查的知识点是必要条件、充分条件与充要条件的判断及不等式的性质,我们根据充要条件的定义对题目中的四个答案逐一进行分析即可得到答案.
解答:解:∵①中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故①为假命题;
∵②中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,
故“a+5是无理数”是“a是无理数”的充要条件,故②为真命题;
∵③中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,
故“a>b”是“a2>b2”的即充分也不必要条件,故③为假命题;
∵④中{a|a<5}?{a|a<3},故“a<5”是“a<3”的必要不充分条件,故④为真命题.
故真命题的个数为2
故选B
点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.学生要理解说明一个命题为假命题,只需要举一个反例即可,要说明一个命题为真命题,必须经过严格的证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下四个命题:
①对于任意实数a、b、c,若a>b,c≠0,则ac>bc;
②设Sn 是等差数列{an}的前n项和,若a2+a6+a10为一个确定的常数,则S11也是一个确定的常数;
③关于x的不等式ax+b>0的解集为(-∞,1),则关于x的不等式
bx-ax+2
>0的解集为(-2,-1);
④对于任意实数a、b、c、d,若a>b>0,c>d则ac>bd.
其中正确命题的是
 
(把正确的答案题号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在(0,+∞)上的函数f(x)满足以下条件:①对于任意实数a,b,都有f(a•b)=f(a)+f(b)-p,其中p是正实数;②f(2)=p-1;(2)③x>1时,总有f(x)<p
(1)求f(1)及f(
12
)
的值(写成关于p的表达式);
(2)求证:f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对于任意实数a,b(a<b),随机变量X满足P(a<X≤b)=
b
a
?μ,σ(x)dx
,称随机变量X服从正态分布,记为N(μ,σ2),若X~(0,1),P(X>1)=p,则
0
-1
?μ,σ(x)dx
=
1
2
-p
1
2
-p

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)设定义在(0,+∞)上的函数f(x)满足:①对于任意实数a,b都有f(ab)=f(a)+f(b)-5;②f(2)=4.则f(1)=
5
5
;若an=f(2n)(n∈N*),数列{an}的前项和为Sn,则Sn的最大值是
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ln(
x2+1
-x)
,则对于任意实数a,b(a+b≠0),
f(a)+f(b)
a+b
的值(  )

查看答案和解析>>

同步练习册答案