【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为
A. 15名志愿者身高的极差小于臂展的极差
B. 15名志愿者身高和臂展成正相关关系,
C. 可估计身高为190厘米的人臂展大约为189.65厘米,
D. 身高相差10厘米的两人臂展都相差11.6厘米,
【答案】D
【解析】
根据散点图和回归方程的表达式,得到两个变量的关系,A根据散点图可求得两个量的极差,进而得到结果;B,根据回归方程可判断正相关;C将190代入回归方程可得到的是估计值,不是准确值,故不正确;D,根据回归方程x的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确.
A,身高极差大约为25,臂展极差大于等于30,故正确;
B,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;
C,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;
D,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确.
故答案为:D.
科目:高中数学 来源: 题型:
【题目】
某初级中学共有学生2000名,各年级男、女生人数如下表:
初一年级 | 初二年级 | 初三年级 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
求x的值;
现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
已知y245,z245,求初三年级中女生比男生多的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汉字听写大会不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第1组,第2组,,第6组,如图是按上述分组方法得到的频率分布直方图.
若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第2组或第6组的概率;
试估计该市市民正确书写汉字的个数的平均数与中位数;
已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在杨辉三角形中,从第2行开始,除1以外,其它每一个数值是它上面的两个数值之和,该三角形数阵开头几行如图所示.
(1)在杨辉三角形中是否存在某一行,使该行中三个相邻的数之比是3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;
(2)已知n,r为正整数,且n≥r+3.求证:任何四个相邻的组合数C,C,C,C不能构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,0),且圆C:x2+y2﹣6x+4y+4=0.
(Ⅰ)当直线过点P且与圆心C的距离为1时,求直线的方程;
(Ⅱ)设过点P的直线与圆C交于A、B两点,若|AB|=4,求以线段AB为直径的圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com