精英家教网 > 高中数学 > 题目详情

【题目】如图,一楼房高米,某广告公司在楼顶安装一块宽米的广告牌,为拉杆,广告牌的倾角为,安装过程中,一身高为米的监理人员站在楼前观察该广传牌的安装效果:为保证安全,该监理人员不得站在广告牌的正下方:设米,该监理人员观察广告牌的视角.

(1)试将表示为的函数;

(2)求点的位置,使取得最大值.

【答案】(1);(2)当米时,取得最大值.

【解析】

1)作,垂足为;作,垂足为,交;作,垂足为;在分别用表示出,根据,利用两角和差正切公式可求得结果;(2)根据(1)的结论,设,可得,利用基本不等式可求得时,取最大值,又上单调递增,可知时,最大,从而可得到结果.

1)作,垂足为;作,垂足为,交;作,垂足为,如下图所示:

中,

中,

监理人员必须在的右侧

综上所述:

2)由(1)可得:

,则

(当且仅当,即时取等号)

,即时,取最大值

上单调递增 最大时,最大

米时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:

优秀

非优秀

总计

甲班

10

乙班

30

总计

已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(  )

A. 列联表中的值为30,的值为35

B. 列联表中的值为15,的值为50

C. 根据列联表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”

D. 根据列联表中的数据,若按的可靠性要求,不能认为“成绩与班级有关系”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点

1)求点的轨迹方程;

2)设点的轨迹为曲线,若四边形的四个顶点都在曲线上,对角线互相垂直并且它们的交点恰为点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为为参数).

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

(Ⅱ)若直线与曲线交于两点,求的值,并求定点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的一条弦被点平分,则此弦所在的直线方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

(1)当时,求函数的单调区间;

(2)对任意均有的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是腾讯开发的一个记录跑步或行走情况(步数里程)的公众号用户通过该公众号可查看自己某时间段的运动情况.某人根据2018年1月至2018年11月期间每月离步的里程(单位:十公里)的数据绘制了下面的折线图.根据该折线图,下列结论正确的是( )

A.月跑步里程逐月增加

B.月跑步里程最大值出现在10月

C.月跑步里程的中位数为5月份对应的里程数

D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选派学生参加“厦门市中学生知识竞赛”,某校对本校2000名学生进行选拔性测试,得到成绩的频率分布直方图(如图).规定:成绩大于或等于110分的学生有参赛资格,成绩110分以下(不包括110分)的学生则被淘汰.

1)求获得参赛资格的学生人数;

2)根据频率分布直方图,估算这2000名学生测试的平均成绩(同组中的数据用该组区间点值作代表);

3)若知识竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;

方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被海汰.

已知学生甲只会5道备选题中的3道,那么甲选择哪种答题方案,进入复赛的可能性更大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的三个顶点A(3,0),B(2,1),C(2,3).求:

BC边上中线AD所在直线的方程;

BC边上高线AH所在直线的方程.

查看答案和解析>>

同步练习册答案