精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式x3-(2m+1)x2-6m(m-1)x+1,x∈R.
(1)当m=-1时,求函数y=f (x) 在[-1,5]上的单调区间和最值;
(2)设f′(x) 是函数y=f (x) 的导数,当函数y=f′(x) 的图象在(-1,5)上与x轴有唯一的公共点时,求实数m的取值范围.

解(1)当m=-1时,f(x)=x3+x2-12x+1,
∴f′(x)=2x2+2x-12=2(x+3)(x-2)的两个根为x=-3或x=2,
只有x=2在[-1,5]上,所以f(x)在[-1,2]上单调递减,在[2,5]上单调递增.
又f(-1)=,f(2)=-,f(5)=.(4分)

故函数y=f(x)在[-1,5]上的最大值为,最小值为-.(6分)
(2)由已知有f′(x)=2x2-2(2m+1)x-6m(m-1),x∈R.
函数y=f′(x)的图象与x轴的公共点的横坐标就是二次方程
x2-(2m+1)x-3m(m-1)=0的实数根,解得x1=3m,x2=1-m.
①当x1=x2时,有3m=1-m?m=,此时x1=x2=∈(-1,5)为所求.(8分)
②当x1≠x2时,令H(x)=x2-(2m+1)x-3m(m-1),则函数y=f′(x)的图象在(-1,5)上与x轴有唯一的公共点?H(-1)•H(5)≤0,而H(-1)=-3m2+5m+2,H(5)=-3m2-7m+20,(9分)
所以(-3m2+5m+2)(-3m2-7m+20)≤0,
即(m-2)(3m+1)(m+4)(3m-5)≤0,
解得-4≤m≤-≤m≤2.(10分)
经检验端点,当m=-4和m=2时,不符合条件,舍去.
综上所述,实数m的取值范围是m=或-4<m≤-≤m<2.(12分)
分析:(1)先求原函数的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可求得最值;
(2)将题中条件:“函数f′(x)的图象与x轴在(-1,5)上只有一个公共点,”等价于“函数y=f′(x)的图象与x轴的公共点的横坐标就是二次方程x2-(2m+1)x-3m(m-1)=0的实数根”,利用二次函数根的分布即可求得结果.
点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、导数在最大值、最小值问题中的应用、不等式的解法等基础知识,考查运算求解能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案