精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2﹣2x+c,且f(x)>0的解集是
(1)求f(2)的最小值及f(2)取最小值时f(x)的解析式;
(2)在f(2)取得最小值时,若对于任意的x>2,f(x)+4≥m(x﹣2)恒成立,求实数m的取值范围.

【答案】
(1)解:由题意可得 ac=1c>0

所以f(2)=4a﹣4+c≥2 ﹣4=0,

当且仅当4a=c即 时“=”成立,

由a= ,c=2得:f(x)= x2﹣2x+2


(2)解:由(1)可得f(x)= x2﹣2x+2= (x﹣2)2

因为对于任意的x∈(2,+∞),f(x)+4≥m(x﹣2)恒成立,

∴m≤ (x﹣2)+ 在x∈(2,+∞),恒成立,

故[ (x﹣2)+ ]min≥m即可,

又函数y= (x﹣2)+ 在x∈(2,+∞)上递增,

所以[ (x﹣2)+ ]min=2

当且仅当x=2+2 时“=”成立,

∴m≤2


【解析】(1)由f(x)>0的解集是 { x | x ≠ }可得出该二次函数的开口向上故a>1,与x轴有且只有一个交点故f()=0,可得出f(x)的解析式,f(2)的值,(2)由(1)求出的解析式,由于对于任意的x∈(2,+∞),f(x)+4≥m(x﹣2)恒成立,进行参变分离,得到m≤ (x﹣2)+ 在x∈(2,+∞)恒成立,从而求出m的取值范围.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求证:直线l恒过定点;
(2)求直线l被圆C截得的弦长最长与最短的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(用空间向量坐标表示解答)已知正三棱柱ABC﹣A1B1C1的各棱长都是4,E是BC的中点,F在CC1上,且CF=1.

(1)求证:EF⊥A1C;
(2)求二面角C﹣AF﹣E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,设E、F分别为PC、BD的中点.

(1)求证:EF∥平面PAD;
(2)求证:面PAB⊥平面PDC;
(3)求二面角B﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校为进行“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为 元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为 元(k为正常数).

(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣t|+ (x>0);
(1)判断函数y=f(x)在区间(0,t]上的单调性,并证明;
(2)若函数y=f(x)的最小值为与t无关的常数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,则a的取值范围是

查看答案和解析>>

同步练习册答案