精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I) 当时,求函数的单调区间;

(II) 当时,恒成立,求的取值范围.

【答案】(Ⅰ) 单调递增区间为,单调递减区间为.

(Ⅱ).

【解析】试题分析:(Ⅰ)对函数求导可得有两个不同解结合函数的定义域即可求得函数的单调区间;(Ⅱ)当时,恒成立等价于当时,恒成立求导得利用导数研究函数的单调性从而可确定,然后对分类讨论即可求得的取值范围.

试题解析:(Ⅰ)∵,函数定义域为:

,由可知,

从而有两个不同解.

,则

时,;当时,

所以函数的单调递增区间为

单调递减区间为.

(Ⅱ)由题意得,当时,恒成立.

,求导得

,则

上单调递增,即上单调递增,

①当时,

此时,上单调递增,而.

恒成立,满足题意.

②当时,,而

根据零点存在性定理可知,存在,使得.

时,单调递减;

时,单调递增.

恒成立矛盾

实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足,其中,当药剂在水中释放的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.

(1)如果投放的药剂质量为m=4,试问自来水达到有效净化一共可持续几天?

(2)如果投放的药剂质量为m,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)当时,求函数的单调区间;

(2)若函数的图象在点处的切线的倾斜角为,且函数)当且仅当在处取得极值,其中的导函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为

A. 48 B. 36 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线顶点在原点,焦点在x轴上,且过点(44),焦点为F

1)求抛物线的焦点坐标和标准方程;

2P是抛物线上一动点,MPF的中点,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示单位:cm,四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人参加普法知识竞赛,共有5题,选择题3个,判断题2个,甲、乙两人各抽一题.

1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?

2)甲、乙两人中至少有一人抽到选择题的概率是多少?

查看答案和解析>>

同步练习册答案