精英家教网 > 高中数学 > 题目详情

【题目】已知方程只有一个实数根,则的取值范围是(

A.B.C.D.

【答案】A

【解析】

,则原方程转化成,令,显然,问题转化成函数上只有一个零点1,求导后再利用导数研究函数的单调性与最值,由此可得答案.

解:令,则原方程转化成,即

,显然

问题转化成函数上只有一个零点1,

,则单调递增,,此时符合题意;

,则单调递增,,此时符合题意;

,记

则函数开口向下,对称轴,过

时,单调递减,,此时符合题意;

时,设有两个不等实根

,对称轴,所以

单调递减,单调递增,单调递增,

由于,所以

,所以

结合零点存在性定理可知,函数存在一个零点,不符合题意;

综上,符合题意的的取值范围是

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代名著《张丘建算经》中记载:今有方锥,下广二丈,高三丈.欲斩末为方亭,令上方六尺.问:斩高几何?大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底边长为六尺,则截去的正四棱锥的高是多少.如果我们把求截去的正四棱锥的高改为求剩下的正四棱台的体积,则该正四棱台的体积是(注:1尺)(

A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l与曲线C交于不同的两点AB.

1)求曲线C的参数方程;

2)若点P为直线与x轴的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当为自然对数的底数)时,求的最小值;

2)讨论函数零点的个数;

3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于克该海产品的概率.

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元)()的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且 ,其中 =.根据所给的统计量,求关于的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于⊙Ox2+y21来说,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若PO重合,SPr;若P不与O重合,射线OP与⊙O的交点为ASPAP的长度(如图).

1)直线2x+2y+10在圆内部分的点到⊙O的最长距离为_____

2)若线段MN上存在点T,使得:

①点T在⊙O内;

P∈线段MN,都有STSP成立.则线段MN的最大长度为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(

A.命题,则的逆否命题为,则

B.命题是假命题

C.若命题均为假命题,则命题为真命题

D.是定义在R上的函数,则是奇函数的必要不允分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的名学生中随机抽取男生,女生各人进行模拟选科.经统计,选择全理的人数比不选全理的人数多.

1)请完成下面的列联表;

2)估计有多大把握认为选择全理与性别有关,并说明理由;

3)现从这名学生中已经选取了男生名,女生名进行座谈,从中抽取名代表作问卷调查,求至少抽到一名女生的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了非洲猪瘟疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就一天中一头猪的平均成本与生猪存栏数量之间的关系进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:.

参考数据:.

查看答案和解析>>

同步练习册答案