解:(1)∵Q
n(x
n,y
n),Q
n+1(x
n+1,y
n+1),
∴点P
n的坐标为(x
n,y
n+1)
∴
.-----------------------------------(2分)
(2)∵Q
n,Q
n+1在曲线C上,
∴
,
,
又∵P
n在曲线C
n上,
∴
,--------------------------------(4分)
∴x
n+1=x
n+2
-n,
∴a
n=2
-n.-----------------------------------------(6分)
(3)x
n=(x
n-x
n-1)+(x
n-1-x
n-2)+…+(x
2-x
1)+x
1=2
-(n-1)+2
-(n-2)+…+2
-1+1
=
=2-2
1-n.-------------------(9分)
∴a
n•b
n=(x
n+1-x
n)•(y
n-y
n+1)
=
=
=
,
∵2•2
n-2≥2
n,2•2
n-1≥3,
∴
.--------------------------------(12分)
∴S
n=a
1b
1+a
2b
2+…+a
nb
n-----------------------(14分)
分析:(1)由Q
n(x
n,y
n),Q
n+1(x
n+1,y
n+1),知点P
n的坐标为(x
n,y
n+1),由此能求出点Q
1、Q
2的坐标.
(2)由Q
n,Q
n+1在曲线C上,知
,
,由P
n在曲线C
n上,知
,由此能求出数列{a
n} 的通项公式.
(3)由x
n=(x
n-x
n-1)+(x
n-1-x
n-2)+…+(x
2-x
1)+x
1=2
-(n-1)+2
-(n-2)+…+2
-1+1=
=2-2
1-n,知a
n•b
n=(x
n+1-x
n)•(y
n-y
n+1)=
=
=
,由此入手能够证明s
n<
.
点评:本题考查点坐标的求法、求数列的通项公式、求证s
n<
.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.